Paper | Title | Page |
---|---|---|
TUYA03 | Stochastic Cooling of a High Energy Collider | 913 |
|
||
Three dimensional stochastic cooling was successfully implemented at the Relativistic Heavy Ion Collider to overcome emittance growth from intra-beam scattering. The talk reports on the experience of operating a collider with continuous cooling. The application of such techniques to other hadron machine (e.g. LHC) will be discussed. | ||
![]() |
Slides TUYA03 [1.350 MB] | |
TUPZ035 | RHIC Polarized Proton Status and Operation Highlights | 1888 |
|
||
RHIC operation as the polarized proton collider presents unique challenges since both luminosity and spin polarization are important. A lot of upgrades and modifications have been made since last polarized proton operation. A 9 MHz rf system has been installed to improve longitudinal match at injection and to increase luminosity. A vertical survey of RHIC was performed before the run to get better magnet alignment. The orbit control has also been improved this year. AGS polarization transfer efficiency is improved by a horizontal tune jump system. To preserve polarization on the ramp, a new working point was chosen with the vertical tune near a third order resonance. The orbit and tune control are essential for polarization preservation. To calibrate the polarization level at 250 GeV, polarized protons were accelerated up to 250GeV and decelerated back to 100GeV. The tune, orbit and chromaticity feedback is essential for this operation. The new record of luminosity was achieved with higher polarization at 250 GeV in this run. The overview of the changes and operation results are presented in this paper. | ||
TUPZ038 | RHIC Performance for FY2011 Au+Au Heavy Ion Run | 1894 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. Following the Fiscal Year (FY) 2010 (Run-10) Relativistic Heavy Ion Collider (RHIC) Au+Au run [1], RHIC experiment upgrades sought to improve detector capabilities. In turn, accelerator improvements were made to improve the luminosity available to the experiments for this run (Run-11). These improvements included: a redesign of the stochastic cooling systems for improved reliability; a relocation of “common” RF cavities to alleviate intensity limits due to beam loading; and an improved usage of feedback systems to control orbit, tune and coupling during energy ramps as well as while colliding at top energy. We present an overview of changes to the Collider and review the performance of the collider with respect to instantaneous and integrated luminosity goals. |
||
WEPS028 | Lattice Design of a Rapid Cycling Medical Synchrotron for Carbon/Proton Therapy | 2541 |
|
||
Funding: Work supported by Cooperative Research and Development Agreement (CRADA), No. BNL-C-10-03 between the Brookhaven National Laboratory and Best Medical International, Inc. We present a design of the ion Rapid Cycling Medical Synchrotron (iRCMS) for carbon/proton cancer therapy facility. The facility design, produced at Brookhaven National Accelerator (BNL) at the Collider Accelerator Division (CAD) for the BEST Medical International, Inc., will be able to treat the cancer patients with carbon, lighter ions and protons. The low energy part accelerates ions and protons to the kinetic energy of 8 MeV. It consists of two ion sources (one of fully stripped carbon ions and one for protons), a Radio-Frequency Quadrupole (RFQ) and linac. The 8 GeV beam is injected into a fast cycling synchrotron (iRCMS). The lattice design is a racetrack, with zero dispersion two parallel straight sections. There are 24 combined function magnets in the two arcs with a radius of ~5.6 meters with maximum magnetic field of less than 1.3 T. The acceleration is performed in 30 Hz up to the required energy for the cancer tumor treatment assuming the spot scanning technique. The maximum energy for carbon ions is 400 MeV. Ions are extracted in a single turn and fed to different beam lines for patient treatment. |
||