Author: Bhat, C.M.
Paper Title Page
MOPC057 Loss of Landau Damping in the LHC 211
 
  • E.N. Shaposhnikova, T. Argyropoulos, P. Baudrenghien, T. Bohl, A.C. Butterworth, J. Esteban Muller, T. Mastoridis, G. Papotti, J. Tückmantel, W. Venturini Delsolaro, U. Wehrle
    CERN, Geneva, Switzerland
  • C.M. Bhat
    Fermilab, Batavia, USA
 
  Loss of Lan­dau damp­ing lead­ing to a sin­gle bunch lon­gi­tu­di­nal quadrupole in­sta­bil­i­ty has been ob­served in the LHC dur­ing the ramp and on the 3.5 TeV flat top for small in­ject­ed lon­gi­tu­di­nal emit­tances. The first mea­sure­ments are in good agree­ment with the thresh­old cal­cu­lat­ed for the ex­pect­ed lon­gi­tu­di­nal re­ac­tive impedance bud­get of the LHC as well as with the thresh­old de­pen­dence on beam en­er­gy. The cure is a con­trolled lon­gi­tu­di­nal emit­tance blow-up dur­ing the ramp which for con­stant thresh­old through the cycle should pro­vide an emit­tance pro­por­tion­al to the square root of en­er­gy.  
 
TUPZ032 LHC Luminosity Upgrade with Large Piwinski Angle Scheme: A Recent Look 1879
 
  • C.M. Bhat
    Fermilab, Batavia, USA
  • F. Zimmermann
    CERN, Geneva, Switzerland
 
  Funding: Work is supported by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy and US LARP.
Lu­mi­nos­i­ty up­grade at the LHC col­lid­er using bunch­es with con­stant line charge den­si­ty (lon­gi­tu­di­nal­ly flat bunch­es) but with same beam-beam tune shift at col­li­sion, the so called large Pi­win­s­ki angle scheme* is being stud­ied with re­newed in­ter­est in re­cent years**. By de­sign the total beam-beam tune shift at the LHC is less than 0.015. But the ini­tial op­er­a­tional ex­pe­ri­ence at the LHC in­di­cates the pos­si­bil­i­ty of op­er­at­ing with beam-beam tune shifts as high as 0.02. In view of this de­vel­op­ment we have re­vis­it­ed the re­quire­ments for the Large Pi­win­s­ki Angle scheme at the LHC. In this paper we pre­sent a new pa­ram­e­ter list sup­port­ed by 1) cal­cu­la­tions on the lu­mi­nos­i­ty gain, 2) re­duc­tion of e-cloud is­sues on near­ly flat bunch­es and 3) lon­gi­tu­di­nal beam dy­nam­ics sim­u­la­tions. We also make some re­marks on the need­ed up­grades on the LHC in­jec­tor ac­cel­er­a­tors.
* F. Ruggiero and F. Zimmermann, PRST-AB 5, 061001 (2002).
** C. M. Bhat, CERN-2009-004, pp. 106-114.
Thanks to O.Bruning, E.Shaposhnikova, H.Damerau, E.Mahner, F.Caspers & CERN BE/ABP & RF Depts.
 
 
WEPS107 Phase Space Coating in Synchrotrons: Some Applications* 2763
 
  • C.M. Bhat
    Fermilab, Batavia, USA
 
  Funding: Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy
Phase-space paint­ing to pro­duce very high in­ten­si­ty beam in syn­chrotrons is one of the wide­ly stud­ied top­ics in ac­cel­er­a­tor physics. A re­mark­able ex­am­ple of this is mul­ti-turn beam in­jec­tion by trans­verse phase-space paint­ing in spal­la­tion sources. Use of bar­ri­er buck­ets at syn­chrotron stor­age rings has paved way for fur­ther ad­vance­ments in this field. The Fer­mi­lab Re­cy­cler, an­tipro­ton stor­age ring, has been aug­ment­ed with mul­ti­pur­pose broad-band bar­ri­er rf sys­tems. Re­cent­ly we have de­vel­oped a lon­gi­tu­di­nal phase-space coat­ing tech­nique over al­ready e-cooled high in­ten­si­ty low lon­gi­tu­di­nal an­tipro­ton beam and demon­strat­ed with beam ex­per­i­ments. This method is ex­tend­ed to map the in­co­her­ent syn­chrotron tune of beam par­ti­cles in a bar­ri­er buck­et. Here I re­view var­i­ous phase-space paint­ing tech­niques being used in par­ti­cle ac­cel­er­a­tors in­clud­ing some new schemes de­vel­oped using bar­ri­er rf sys­tems and pos­si­ble new ap­pli­ca­tions.
 
 
THOBA01 Electron Cloud Observations in LHC 2862
 
  • G. Rumolo, G. Arduini, V. Baglin, H. Bartosik, P. Baudrenghien, N. Biancacci, G. Bregliozzi, S.D. Claudet, R. De Maria, J. Esteban Muller, M. Favier, C. Hansen, W. Höfle, J.M. Jimenez, V. Kain, E. Koukovini, G. Lanza, K.S.B. Li, G.H.I. Maury Cuna, E. Métral, G. Papotti, T. Pieloni, F. Roncarolo, B. Salvant, E.N. Shaposhnikova, R.J. Steinhagen, L.J. Tavian, D. Valuch, W. Venturini Delsolaro, F. Zimmermann
    CERN, Geneva, Switzerland
  • C.M. Bhat
    Fermilab, Batavia, USA
  • U. Iriso
    CELLS-ALBA Synchrotron, Cerdanyola del Vallès, Spain
  • N. Mounet, C. Zannini
    EPFL, Lausanne, Switzerland
 
  Op­er­a­tion of LHC with bunch trains dif­fer­ent spac­ings has re­vealed the for­ma­tion of an elec­tron cloud in­side the ma­chine. The main ob­ser­va­tions of elec­tron cloud build-up are the pres­sure rise mea­sured at the vac­u­um gauges in the warm re­gions, as well as the in­crease of the beam screen tem­per­a­ture in the cold re­gions due to an ad­di­tion­al heat load. The ef­fects of the elec­tron cloud were also vis­i­ble as a strong in­sta­bil­i­ty and emit­tance growth af­fect­ing the last bunch­es of longer trains, which could be im­proved run­ning with high­er chro­matic­i­ty and/or larg­er trans­verse emit­tances. A sum­ma­ry of the 2010 and 2011 ob­ser­va­tions and mea­sure­ments and a com­par­i­son with ex­ist­ing mod­els will be pre­sent­ed. The ef­fi­cien­cy of scrub­bing and scrub­bing strate­gies to im­prove the ma­chine run­ning per­for­mance will be also briefly dis­cussed.  
slides icon Slides THOBA01 [2.911 MB]