Author: Beebe-Wang, J.
Paper Title Page
TUPC045 Recirculating Electron Linacs (REL) for LHeC and eRHIC 1099
 
  • D. Trbojevic, J. Beebe-Wang, Y. Hao, D. Kayran, V. Litvinenko, V. Ptitsyn, N. Tsoupas
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work performed under a Contract Number DE-AC02-98CH10886 with the auspices of the US Department of Energy.
We pre­sent a de­sign of a CW Elec­tron Re­cov­ery Linacs (ERL) for fu­ture elec­tron hadron col­lid­ers eRHIC and LHeC. In eRHIC, a six-pass ERL would be in­stalled in the ex­ist­ing tun­nel of the pre­sent Rel­a­tivis­tic Heavy Ion Col­lid­er (RHIC). The 5-30 GeV po­lar­ized elec­trons will col­lide with RHIC’s 50-250 (325) GeV po­lar­ized pro­tons or 20-100 (130) GeV/u heavy ions. In LHeC a 3-pass 60 GeV CW ERL will pro­duce po­lar­ized elec­trons for col­li­sions with 7 TeV pro­tons. After col­li­sion, elec­tron beam en­er­gy is re­cov­ered and elec­trons are dumped at low en­er­gy. Two su­per­con­duct­ing linacs are lo­cat­ed in the two straight sec­tions in both ERLs. The mul­ti­ple arcs are made of Flex­i­ble Mo­men­tum Com­paction lat­tice (FMC) al­low­ing ad­justable mo­men­tum com­paction for elec­trons with dif­fer­ent en­er­gies. The mul­ti­ple arcs, placed above each other, are matched to the two linac’s straight sec­tions with split­ters and com­bin­ers.
 
 
TUPZ038 RHIC Performance for FY2011 Au+Au Heavy Ion Run 1894
 
  • G.J. Marr, L. A. Ahrens, M. Bai, J. Beebe-Wang, I. Blackler, M. Blaskiewicz, J.M. Brennan, K.A. Brown, D. Bruno, J.J. Butler, C. Carlson, R. Connolly, T. D'Ottavio, K.A. Drees, A.V. Fedotov, W. Fischer, W. Fu, C.J. Gardner, D.M. Gassner, J.W. Glenn, X. Gu, M. Harvey, T. Hayes, L.T. Hoff, H. Huang, P.F. Ingrassia, J.P. Jamilkowski, N.A. Kling, M. Lafky, J.S. Laster, C. Liu, Y. Luo, M. Mapes, A. Marusic, K. Mernick, R.J. Michnoff, M.G. Minty, C. Montag, J. Morris, C. Naylor, S. Nemesure, S. Polizzo, V. Ptitsyn, G. Robert-Demolaize, T. Roser, P. Sampson, J. Sandberg, V. Schoefer, C. Schultheiss, F. Severino, T.C. Shrey, K.S. Smith, D. Steski, S. Tepikian, P. Thieberger, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, B. Van Kuik, G. Wang, M. Wilinski, A. Zaltsman, K. Zeno, S.Y. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Fol­low­ing the Fis­cal Year (FY) 2010 (Run-10) Rel­a­tivis­tic Heavy Ion Col­lid­er (RHIC) Au+Au run [1], RHIC ex­per­i­ment up­grades sought to im­prove de­tec­tor ca­pa­bil­i­ties. In turn, ac­cel­er­a­tor im­prove­ments were made to im­prove the lu­mi­nos­i­ty avail­able to the ex­per­i­ments for this run (Run-11). These im­prove­ments in­clud­ed: a re­design of the stochas­tic cool­ing sys­tems for im­proved re­li­a­bil­i­ty; a re­lo­ca­tion of “com­mon” RF cav­i­ties to al­le­vi­ate in­ten­si­ty lim­its due to beam load­ing; and an im­proved usage of feed­back sys­tems to con­trol orbit, tune and cou­pling dur­ing en­er­gy ramps as well as while col­lid­ing at top en­er­gy. We pre­sent an overview of changes to the Col­lid­er and re­view the per­for­mance of the col­lid­er with re­spect to in­stan­ta­neous and in­te­grat­ed lu­mi­nos­i­ty goals.
 
 
THPZ019 High Luminosity Electron-hadron Collider eRHIC 3726
 
  • V. Ptitsyn, E.C. Aschenauer, J. Beebe-Wang, S.A. Belomestnykh, I. Ben-Zvi, R. Calaga, X. Chang, A.V. Fedotov, H. Hahn, L.R. Hammons, Y. Hao, P. He, A.K. Jain, E.C. Johnson, D. Kayran, J. Kewisch, V. Litvinenko, G.J. Mahler, W. Meng, B. Parker, A.I. Pikin, T. Rao, T. Roser, B. Sheehy, J. Skaritka, R. Than, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, G. Wang, Q. Wu, W. Xu
    BNL, Upton, Long Island, New York, USA
 
  We pre­sent the de­sign of a fu­ture high-en­er­gy high-lu­mi­nos­i­ty elec­tron-hadron col­lid­er at RHIC called eRHIC. We plan adding 20 (30) GeV en­er­gy re­cov­ery linacs to ac­cel­er­ate and to col­lide po­lar­ized and un­po­lar­ized elec­trons with hadrons in RHIC. The cen­ter-of-mass en­er­gy of eRHIC will range from 30 to 200 GeV. The lu­mi­nos­i­ty ex­ceed­ing 1034 cm-2s−1 can be achieved in eRHIC using the low-be­ta in­ter­ac­tion re­gion which a 10 mrad crab cross­ing. A nat­u­ral stag­ing sce­nario of step-by-step in­creas­es of the elec­tron beam en­er­gy by bui­lid­ing-up of eRHIC's SRF linacs. We re­port on the eRHIC de­sign and cost es­ti­mates for it stages. We dis­cuss the progress of eRHC R&D pro­jects from the po­lar­ized elec­tron source to the co­her­ent elec­tron cool­ing.  
 
THPZ020 eRHIC Interaction Region Design 3729
 
  • D. Trbojevic, J. Beebe-Wang, Y. Hao, D. Kayran, Y. Luo, V. Ptitsyn, N. Tsoupas
    BNL, Upton, Long Island, New York, USA
  • V. Litvinenko
    Stony Brook University, Stony Brook, USA
 
  Funding: *Work performed under a Contract Number DE-AC02-98CH10886 with the auspices of the US Department of Energy.
In­ter­ac­tion re­gion de­sign of the fu­ture elec­tron ion col­lid­er at Rel­a­tivis­tic Heavy Ion Col­lid­er (eRHIC) is pre­sent­ed. Po­lar­ized pro­tons/He­li­um and heavy ions will col­lid­er with 5-30 GeV po­lar­ized elec­trons with a 10 mrad angle by using the crab cav­i­ty cross­ing. The in­ter­ac­tion re­gion is de­signed with­out bend­ing elec­trons to avoid prob­lems with syn­chrotron ra­di­a­tion. Use of the com­bined func­tion mag­net in the ion side al­lows de­tec­tion of neu­trons. De­sign al­lows de­tec­tion of deep vir­tu­al scat­ter­ing as well as de­tec­tion of par­tons with lower en­er­gies (po/2.5). The be­ta­tron func­tion at col­li­sions is 5 cm as­sum­ing use of three di­men­sion­al elec­tron beam cool­ing. Spe­cial chro­matic­i­ty cor­rec­tion is ap­plied in both sides of the ion straight sec­tion in­ter­ac­tion re­gion. Elec­trons ar­rive with avoid­ing com­plete­ly syn­chrotron ra­di­a­tion at the de­tec­tor. Spe­cial su­per­con­duct­ing com­bined func­tion mag­net is de­signed to allow pas­sage of elec­trons through the field free re­gion.