High Frequency, High Gradient Dielectric Wakefield Acceleration Experiments at SLAC and BNL

J.B. Rosenzweig

UCLA Dept. of Physics and Astronomy

Kyoto, IPAC 2010

May 26, 2010
Scaling the accelerator in size

- **Lasers** produce copious power (~J, >TW)
 - Scale in λ by 4 orders of magnitude
 - $\lambda < 1\ \mu m$ gives *challenges* in beam dynamics
 - Reinvent resonant structure using *dielectric* (E163, UCLA)
 - GV/m fields possible, breakdown limited...

Resonant dielectric laser-excited structure (with HFSS simulated fields)

- GV/m allows major reduction in size, cost
- To jump to GV/m, mm-THz may be better:
 - Beam dynamics, breakdown scaling
 - Must have new source...
Promising paradigm for high field accelerators: wakefields

- Coherent radiation from bunched, $\nu \sim c$, e$^-$ beam
 - *Any slow-wave* environment
 - Powers exotic schemes: plasma, dielectrics
- Resonant or non-resonant (*short pulse*) operation
- High average power beams can be produced
 - Tens of MW, beats lasers...
- Intense beams needed by many fields
 - X-ray FEL
 - X-rays from Compton scattering
 - THz sources
Schematic of wakefield-based collider

(concept borrowed from W. Gai…)

• Similar to original CLIC scheme
• Study for plasma wakefield accelerator
 • $\gamma\gamma$ due to charge asymmetry in PWFA
 • Not a problem for DWA…
The dielectric wakefield accelerator

- **High accelerating gradients: GV/m level**
 - Dielectric based, low loss, short pulse
 - Higher gradient than optical?
 - Unlike plasma, charged particles in beam path...

- **Use wakefield collider schemes**
 - CLIC style modular system
 - *Afterburner* (energy multiplier) possible for existing accelerators

- **Spin-offs**
 - High power THz radiation source (e.g. E. Chiadroni)

Coherent Cerenkov scaling

\[
\frac{dU}{dz} \propto k_{\text{max}}^2 \propto \sigma_z^{-2}
\]

\[
\frac{dU}{dz} \propto \int (n - 1)kdk \propto k_{\text{max}}^2
\]
Dielectric Wakefield Accelerator
Overview

- Electron bunch ($\beta \approx 1$) drives wake in cylindrical dielectric structure
 - Dependent on structure properties
 - Generally multi-mode excitation
- Wakefields accelerate trailing bunch
- Mode wavelengths (quasi-optical)
 \[\lambda_n \approx \frac{4(b - a)}{n} \sqrt{\varepsilon - 1} \]
- Peak decelerating field
 \[eE_{z,\text{dec}} \approx -\sqrt{\frac{4N_br}{8\pi}} m_ec^2 \left(\frac{\varepsilon \sigma}{\varepsilon - 1} + a \right) \]
 Extremely good beam needed
- Transformer ratio (unshaped beam)
 \[R = \frac{E_{z,\text{acc}}}{E_{z,\text{dec}}} \leq 2 \]
T-481: Test-beam exploration of breakdown threshold

- 1st ultra-short, high charge beams
- Beyond pioneering work at ANL...
 - Much shorter pulses, small radial size
 - Higher gradients...
- Leverage off E167 PWFA
- Goal: breakdown studies
 - Al-clad fused SiO₂ fibers
 - ID 100/200 µm, OD 325 µm, L=1 cm
 - Avalanche v. tunneling ionization
 - Beam parameters indicated $E_z \leq 12 \text{GV/m}$ can be excited
 - 3 nC, $\sigma_z \geq 20 \mu\text{m}$, 28.5 GeV
- 48 hr FFTB run

T-481 “octopus” chamber
Methods and Results

- Multiple tube assemblies
- Scanning of bunch lengths for wake amplitude variation
- Vaporization of Al cladding... dielectric more robust
- Observed breakdown threshold (field from simulations)
 - 13.8 GV/m surface field
 - 5.5 GV/m deceleration field
 - Multi-mode effect?
- Correlations to post-mortem inspection

- Longer bunch
- Ultrashort bunch
Breakdown Limits on Gigavolt-per-Meter Electron-Beam-Driven Wakefields in Dielectric Structures

M. C. Thompson,¹,²,* H. Badakov,¹ A. M. Cook,¹ J. B. Rosenzweig,¹ R. Tikhoplov,¹ G. Travish,¹ I. Blumenfeld,³ M. J. Hogan,³ R. Ischebeck,³ N. Kirby,³ R. Siemann,³ D. Walz,³ P. Muggli,⁴ A. Scott,⁵ and R. B. Yoder⁶

¹Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
²Lawrence Livermore National Laboratory, Livermore, California 94551, USA
³Stanford Linear Accelerator Center, Menlo Park, California 94025, USA
⁴University of Southern California, Los Angeles, California 90089, USA
⁵University of California, Santa Barbara, California 93106, USA
⁶Manhattan College, Riverdale, New York 10471, USA

(Received 20 January 2008; published 27 May 2008)

First measurements of the breakdown threshold in a dielectric subjected to GV/m wakefields produced by short (30–330 fs), 28.5 GeV electron bunches have been made. Fused silica tubes of 100 μm inner diameter were exposed to a range of bunch lengths, allowing surface dielectric fields up to 27 GV/m to be generated. The onset of breakdown, detected through light emission from the tube ends, is observed to occur when the peak electric field at the dielectric surface reaches 13.8 ± 0.7 GV/m. The correlation of structure damage to beam-induced breakdown is established using an array of postexposure inspection techniques.
Beam Observations and Analysis

View end of dielectric tube; frames sorted by increasing peak current

Breakdown determined by benchmarked OOPIC simulations

Breakdown limit: 5.5 GV/m decel. field

Multi-mode excitation — short, separated pulses — gives better breakdown dynamics
H. Badakov$^\alpha$, M. Berry$^\beta$, I. Blumenfeld$^\beta$, A. Cook$^\alpha$, F.-J. Decker$^\beta$, M. Hogan$^\beta$, R. Ischebeck$^\beta$, R. Iverson$^\beta$, A. Kanareykin$^\varepsilon$, N. Kirby$^\beta$, P. Muggli$^\gamma$, J.B. Rosenzweig$^\alpha$, R. Siemann$^\beta$, M.C. Thompson$^\delta$, R. Tikhoplav$^\alpha$, G. Travish$^\alpha$, R. Yoder$^\zeta$, D. Walz$^\beta$

$^\alpha$Department of Physics and Astronomy, University of California, Los Angeles

$^\beta$Stanford Linear Accelerator Center

$^\gamma$University of Southern California

$^\delta$Lawrence Livermore National Laboratory

$^\zeta$Manhattanville College

$^\varepsilon$Euclid TechLabs, LLC

Collaboration spokespersons
E169 at FACET: overview

- Research GV/m acceleration scheme in DWA

- Goals
 - Explore breakdown issues in detail
 - Determine usable field envelope
 - **Coherent Cerenkov radiation measurements**
 - Explore alternate materials
 - Explore alternate designs and cladding
 - Slab structure (permits higher Q, low wakes)
 - Radial and longitudinal periodicity…
 - Varying tube dimensions
 - Impedance change
 - Breakdown dependence on wake pulse length

- Awaits FACET construction
 - Reapproval needed
 - Add AWA group to collaboration
Observation of THz Coherent Cerenkov Wakefields @ Neptune

- Chicane-compressed (200 μm) 0.3 nC beam
 - Focused with PMQ array to $\sigma_r \sim 100$ μm ($a = 250$ μm)
- Single mode operation
 - Two tubes, different b, THz frequencies
 - Extremely narrow line width in THz
 - Higher power, lower width than THz FEL
Chicane-compressed (200 μm) 0.3 nC beam
 • Focused with PMQ array to σ_r~100 μm (a=250 μm)

Single mode operation
 • Two tubes, different b, THz frequencies
 • Extremely narrow line width in THz
 • Higher power, lower width than THz FEL
E-169 at FACET: Acceleration

- Observe acceleration
 - ✓ 10-33 cm tube length
 - ✓ longer bunch, acceleration of tail
 - ✓ “moderate” gradient, 1-3 GV/m
 - ✓ single mode operation

- Phase 3: Accelerated beam quality
 - ✓ Witness beam
 - ✓ Alignment, transverse wakes, BBU
 - ✓ Group velocity & EM exposure \(t = \frac{L}{c - v_g} \)
 - ✓ Positrons. Breakdown is different?

| FACET beam parameters for E169: acceleration case |
|------------------|-----------------|
| \(\sigma_z \) | 50-150 \(\mu \)m |
| \(\sigma_r \) | < 10 \(\mu \)m |
| \(E_b \) | 25 GeV |
| \(Q \) | 3 - 5 nC |

Longitudinal E-field

Momentum distribution after 33 cm (OOPIC)
E-169 at FACET: Acceleration

- Observe acceleration
 - 10-33 cm tube length
 - longer bunch, acceleration of tail
 - “moderate” gradient, 1-3 GV/m
 - single mode operation

- Phase 3: Accelerated beam quality
 - Witness beam
 - Alignment, transverse wakes, BBU
 - Group velocity & EM exposure \(t = L / (c - v_g) \)
 - Positrons. Breakdown is different?

<table>
<thead>
<tr>
<th>FACET beam parameters for E169: acceleration case</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma_z)</td>
</tr>
<tr>
<td>(\sigma_r)</td>
</tr>
<tr>
<td>(E_b)</td>
</tr>
<tr>
<td>(Q)</td>
</tr>
</tbody>
</table>

Witness beam, acceleration and BBU
A High Transformer Scenario using Dielectric Wakes

- How to reach high energy with DWAs?
- Enhanced transformer ratio with *ramped beam*
- Does this work with *multi-mode* DWA?
- Scenario: 500-1000 MeV ramped driver; 5-10 GeV FEL injector in <10 m
A FACET test for light source scenario

- Beam parameters: $Q=3 \text{nC}$, ramp $L=2.5 \text{ mm}$, $U=1 \text{ GeV}$
- Structure: $a=100 \text{ \mu m}$, $b=100 \text{ \mu m}$, $\varepsilon=3.8$
- Fundamental $f=0.74 \text{ THz}$
- Performance: $E_z>\text{GV/m}$, $R=9-10$ (10 GeV beam)
- Ramp achieved at UCLA. Possible at ATF, FACET?
A FACET test for light source scenario

- Beam parameters: $Q=3 \text{ nC}$, ramp $L=2.5 \text{ mm}$, $U=1 \text{ GeV}$
- Structure: $a=100 \text{ \(\mu\)m}$, $b=100 \text{ \(\mu\)m}$, $\varepsilon=3.8$
- Fundamental $f=0.74 \text{ THz}$
- Performance: $E_z>\text{GV/m}$, $R=10$ (10 GeV beam)
- Ramp achieved at UCLA. Possible at ATF, FACET?
A FACET test for light source scenario

- Beam parameters: $Q=3$ nC, ramp $L=2.5$ mm, $U=1$ GeV
- Structure: $a=100$ μm, $b=100$ μm, $\varepsilon=3.8$
- Fundamental $f=0.74$ THz
- Performance: $E_Z>\text{GV/m}$, $R=9-10$ (10 GeV beam)
- Ramp achieved at UCLA. Possible at ATF, FACET?

Ramped beam using sextupole-corrected dogleg compression

Multipulse operation: control of group velocity

- **Multiple pulse beam-loaded operation** in linear collider, needs low v_g

- Low charge gives smaller (low ε), shorter beams
 - Can even replace large Q driver
 - Use *periodic DWA* structure in $\sim \pi$-mode, resonant excitation

Example: SiO$_2$/diamond structure
Multipulse operation: control of group velocity

- **Multiple pulse beam-loaded operation** in linear collider, needs low v_g

- Low charge gives smaller (low ε), shorter beams
 - Can even replace large Q driver

- Use **periodic DWA** structure in $\sim \pi$-mode, resonant excitation

Example: SiO$_2$/diamond structure
Initial multi-pulse experiment: uniform SiO$_2$ DWA at BNL ATF

- Exploit Muggli pulse train slicing technique

Correlated energy chirp from linac

Nguyen, NIMA 96 P. Emma, PRL 04
First results from BNL multi-pulse experiments

- Array of 1 cm tubes
 - Si02, diamond!
 - 325-660 μm λ
- Operation of pulse train with both chirp signs
 - Sextupole correction used
 - CTR autocorrelation
- Single bunch wakes observed
- Next: resonant wake excitation, CCR

4-drive + witness in spectrometer

CTR autocorrelation and FFT
First results from BNL multi-pulse experiments

- Array of 1 cm tubes
 - Si02, diamond!
 - 325-660 μm λ
- Operation of pulse train with both chirp signs
 - Sextupole correction used
 - CTR autocorrelation
- Single bunch wakes observed
- Next: resonant wake excitation, CCR

CTR autocorrelation and FFT

Single drive spectrum shows acceleration and deceleration
To a GV/m: multiple pulse DWA experiment at SPARC/X (LNF)

- Uses laser comb technique
- Bunch periodicity: 190 µm (0.63 ps)
 - 0.5 of BNL case
 - Scaled structure
- 125 pC/pulse @ 750 MeV
- 4 pulses + witness
- 1 GV/m, energy doubling in <70 cm
To a GV/m: multiple pulse DWA experiment at SPARC/X (LNF)

- Uses laser comb technique
- Bunch periodicity: 190 μm (0.63 ps)
 - 0.5 of BNL case
 - Scaled structure
- 125 pC/pulse @ 750 MeV
- 4 pulses + witness
- 1 GV/m, energy doubling in <70 cm

>1.1 GV/m wakes in scaled DWA@SPARX
Conclusions

- Very promising technical approach in DWA
 - Physics surprisingly forgiving thus far
 - Looks like an accelerator!
 - Many open questions still to resolve for GV/m

- Pushing towards applications
 - Linear collider: multi-pulse
 - FEL: booster for reaching hard X-rays in few m

- Expect rapid experimental progress
 - 1st ATF; then FACET, SPARC/X...