A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Zhang, K.

Paper Title Page
MOPEC053 Ion Source and Low Energy Beam Transport for the KEK Digital Accelerator 579
 
  • K. Takayama, T. Adachi, T. Arai, Y. Arakida, M. Hasimoto, T. Kawakubo, K. Koyama, T. Kubo, T. Kubo, H. Nakanishi, A. Takagi, K. Zhang
    KEK, Ibaraki
  • T. Kikuchi
    Nagaoka University of Technology, Nagaoka, Niigata
  • K.W. Leo
    Sokendai, Ibaraki
  • K. Okazaki
    Nippon Advanced Technology Co. Ltd., Ibaraki-prefecture
 
 

KEK digital accelerator (DA) capable of accelerating all species of ion* is an induction synchrotron employing no large scale injectors. At the beginning of its operation, Ar ions from the ECR ion source (ECRIS) embedded in the 200 kV high voltage terminal (HVT) are directly injected into KEK-DA though the low energy BT line (LEBT). The permanent magnet ECRIS was assembled at KEK. Its characteristics such as a charge-state spectrum, emittance, and intensity are presented. The 200 kV HVT has been also assembled at KEK. Its voltage stability in the pulse mode operation, where a plasma of 1 msec is created by x-band microwaves at 10 Hz, is discussed. The LEBT consists of the Eintzel lens, momentum analyzer, B magnets with edge focusing, electrostatic chopper**, and a combination of Q magnets. In the upper LEBT from the ion extraction hall to the entrance of the analyzer, possible charge-state ions are contaminated in the space-charge limit and beam focusing is realized through the Eintzel lens and tandem acceleration gaps. In the lower LEBT from the analyzer to the KEK-DA injection point, the lattice has been optimized so as to meet optics matching at the injection point.


*K. Takayama, J. of Appl. Phys. 101 063304(2007), "KEK digital accelerator for material and biological sciences" in this conference
**T.Adachi, "Injection and extraction system" in this conference