Paper | Title | Page |
---|---|---|
MOPE083 | Comparative Measurements of Libera Brilliance and BSP100 | 1176 |
|
||
The Advanced Photon Source (APS) is a third-generation synchrotron light source in the United States. The BPM electronics plays an important part in the beam stability control. This paper presents comparative measurements of two BPM electronics: Libera Brilliance and APS FPGA-based BSP100. Some important parameters such as beam current dependence, electronics resolution and fill pattern dependence have been measured. These measurements were carried out in the lab and in the real system. The results will be useful for deciding which BPM electronics to deploy in the APS upgrade project. |
||
WEPEB048 | Fault Diagnosis of the APS Real-time Orbit Feedback System Based on FTA* | 2800 |
|
||
The Advanced Photon Source (APS) real-time orbit feedback system is complex and faults are difficult to diagnose. This paper presents a diagnostic method based on fault tree analysis (FTA). The fault tree is created based on more than ten years operating experience of the system. The method is described to analyze the fault tree. The operator interface to the diagnostic tool is discussed. |
||
WEPEB049 | Recent Progress of the Bunch-by-bunch Feedback System at the Advanced Photon Source | 2803 |
|
||
A bunch-by-bunch feedback system was installed at the APS in 2008. Close-loop tests were conducted and improvements have been made to the system that include two 500-watt amplifiers, a new location for the horizontal drive stripline, a two-blade new horizontal stripline, and upgrade of front-end electronics. With these improvements we are able to stabilize beam with a reduced chromaticity of 0.45 in the horizontal plane and 2.5 in the vertical plane for the 24-singlet bunch pattern. Beam lifetime has increased from 8.5 hours to 15 hours. We did not observe any obvious increase in the effective beam emittance and rms beam motion. More studies will be performed to explore the potential of improving beam performance of the hybrids fill pattern, which has a 16-mA leading bunch. We report the system improvements and the results of our test results. cyao@aps.anl.gov |