Paper | Title | Page |
---|---|---|
MOPE004 | Development and Construction Status of the Beam Diagnostic System for XFEL/SPring-8 | 957 |
|
||
We report the design, performance, and installation of the beam diagnostic system of XFEL/SPring-8. The electron beam bunches of an XFEL accelerator are compressed from 1 ns to 30 fs by bunch compressors without emittance growth and peak-current fluctuation which directly cause SASE fluctuation. To maintain the stable bunch compression process, the accelerator requires rf caivty beam position monitors (BPM) with 100 nm resolution, OTR screen monitors (SCM) with a few micro-meter resolution, fast beam current monitors (CT) and temporal structure measurement systems with resolution under picosecond. The performance of the developed monitor instruments, such as the BPM, the SCM, and the CT, was tested at the SCSS test accelerator and satisfied with the requirements. To measure the temporal structure of the electron bunch, three type measurement systems, which are a streak camera, an EO sampling measurement, and a transverse deflecting cavity with a resolution of few-tens femtosecond, are being prepared. The streak camera and EO sampling shows the resolution of sub-picosecond. The installation of these beam diagnostic systems is going on smoothly. |
||
MOPE006 | Feasibility Study of Radial EO-Sampling Monitor to Measure 3D Bunch Charge Distributions | 963 |
|
||
We are developing a single-shot and non-destructive 3D bunch charge distribution (BCD) monitor based on Electro-Optical (EO) sampling with a manner of spectral decoding for XFEL/SPring-8. For fine beam tuning, 3D-BCD is often required to measure in real-time. The main function of this bunch monitor can be divided into longitudinal and transverse detection. For the transverse detection, eight EO-crystals surround the beam axis azimuthally, and a linear-chirped probe laser pulse with a hollow shape passes thorough the crystal. The polarization axis of the probe laser should be radially distributed as well as the Coulomb field of the electron bunches. Since the signal intensity encoded at each crystal depends on the strength of the Coulomb field at each point, we can detect the transverse BCD. In the longitudinal detection, we utilize a broadband square spectrum (> 400 nm at 800 nm of a central wavelength) so that the temporal resolution is < 30 fs if the pulse width of probe laser is 500 fs. In order to achieve 30-fs temporal resolution, we use an organic EO material, DAST crystal, which is transparent up to 30 THz. We report the first experimental results of this 3D-BCD monitor. |