A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Yamazaki, Y.

Paper Title Page
MOPEA060 Reconstructions of the Control System for the Charge Exchange System at the 3GeV RCS in J-PARC 214
 
  • M. Kawase, M. Kinsho, O. Takeda, Y. Yamazaki, M. Yoshimoto
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
 
 

The charge exchange device for 3GeV RCS in J-PARC, which require that a broken foil is exchanged for a new foil by remote control and automatically in vacuum. The control system's important task will be to control under the unified management of the vacuum system and foil driving system and to support EPICS. This device consists of the vacuum system using PLC (Programmable Logic Controller) and the foil driving system using MCU (Multi Control Unit). A workstation (WS) was required, and we developed control system which control under the unified management of 2 different type of system. The uniform management control system became complex system. In fact, therefore control system was unfinished system, it did not protect trouble such as the vacuum gate valve closed while transfer rod insert in the ring. Each algorithm of PLC, MCU and WS was reviewed, and the control system that was able to do the unified management was restructured. Each algorithm of PLC, MCU and WS was debugged so that this control system is made remote control using EPICS. We introduce the reconstruction of the control system for the charge exchange system at the RCS in J-PARC.

 
WEPD085 Design of the Pulse Bending Magnet for Switching the Painting Area Between the MLF and MR in J-Parc 3-Gev Rcs 3293
 
  • T. Takayanagi, M. Kinsho, P.K. Saha, T. Togashi, T. Ueno, M. Watanabe, Y. Yamazaki, M. Yoshimoto
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • H. Fujimori
    J-PARC, KEK & JAEA, Ibaraki-ken
  • Y. Irie
    KEK, Ibaraki
 
 

At the J-PARC 3-GeV injection, the injection painting area is designed to be different for supplying the MLF (Material Life Science Facility) and MR (50GeV Main Ring) beams. Along with the injection system in the ring, pulsed switching magnets which are installed in the injection beam-line should also have a function to control the beam orbit at 25Hz. The deflection angle ranges from 3 to 38 mrad to meet the user operation as well as the beam physics run.

 
THPEB018 Systematic Beam Loss Study due to the Foil Scattering at the 3-GeV RCS of J-PARC 3921
 
  • P.K. Saha, H. Harada, H. Hotchi, K. Yamamoto, Y. Yamazaki, M. Yoshimoto
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • I. Sugai
    KEK, Ibaraki
 
 

The beam loss caused by the nuclear scattering together with the multiple Coulomb scattering at the stripping foil is one of the key issue in RCS (Rapid Cycling Synchrotron) of the J-PARC (Japan Proton Accelerator Research Accelerator). In order to have a very realistic understanding, a systematic study with both experiment and simulation has been carried out recently. A total of seven targets with different thickness were used and the measured beam losses were found to be good in agreement with that in the simulation. A detail and realistic understanding from such a study will be very useful not only to optimize the foil system including the thickness and size at present with the injection beam energy of 181 MeV but also for the near future upgrade with 400 MeV and in addition can be a good example for similar existing and proposing projects.

 
THPEB019 First Step Analysis of Hybrid Type Boron-doped Carbon Stripper Foils For RCS of J-PARC 3924
 
  • Y. Yamazaki, M. Kinsho, O. Takeda, M. Yoshimoto
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • I. Sugai
    KEK, Ibaraki
 
 

J-PARC requires thick carbon stripper foils to strip electrons from the H- beam supplied by the linac before injection into the Rapid Cycling Synchrotron (RCS). Foil thickness is about 200 μg/cm2 corresponding to conversion efficiency of 99.7% from the primary H- beams of 181MeV energy to H+. For this purpose, we have successfully developed hybrid type thick boron-doped carbon (HBC) stripper foils, which showed a drastic improvement not only with respect to the lifetime, but also with respect to thickness reduction and shrinkage at high temperature during long beam irradiation. We started to study carbon stripper foils microscopically why carbon foils have considerable endurance for the beam impact by boron-doped. At first, we made a comparison between nominal carbon and HBC by the electric microscope and ion-induced analysis. In this paper, we will introduce some results for characteristics of HBC foils.

 
THPEB021 Improvements of the Charge Exchange System at the 3GeV RCS in J-PARC 3930
 
  • M. Yoshimoto, M. Kawase, M. Kinsho, O. Takeda, Y. Yamazaki
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • Z. Kabeya
    MHI, Nagoya
  • Y. Saito
    KEK, Ibaraki
 
 

At the 3GeV RCS (Rapid Cycling Synchrotron) in J-PARC (Japan Proton Accelerator Research Complex), the scheme of H- charge exchange injection using stripping foils is adopted. The charge exchange system is composed of three stripping foil devices. The first stripping foil device, which converts the H- beam from the 181MeV LINAC into the H+ beam, can replace the broken foil with new one in vacuum remotely and automatically. In September 2007, mechanical trouble with the first stripping foil device had occurred just before the RCS beam commissioning was started. The magnetic coupling of the transfer rod had been decoupled and the transfer rod had been broken which was caught in the vacuum gate valve. We studied the trouble cause, re-examined the structural design and the selection for the material, and then verified the specification from endurance tests with sample pieces. Then the improved device was installed in the ring in September 2008. In this presentation, we report the mechanical trouble and that countermeasure, including the improvements of the charge exchange system.

 
THPEB020 Beam Study Results with HBC Stripping Foils at the 3-GeV RCS in J-PARC 3927
 
  • M. Yoshimoto, H. Harada, N. Hayashi, H. Hotchi, Y. Irie, M. Kawase, M. Kinsho, R. Saeki, P.K. Saha, K. Yamamoto, Y. Yamazaki
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • T. Ishiyama
    KEK/JAEA, Ibaraki-Ken
  • I. Sugai
    KEK, Ibaraki
 
 

The hybrid type thick boron-doped carbon (HBC) stripping foils are installed and used for the beam injection at the 3GeV RCS (Rapid Cycling Synchrotron) in J-PARC (Japan Proton Accelerator Research Complex). The HBC foils are developed by Sugai group in KEK, which improved the lifetime drastically. Up to now, the performance deterioration of the stripping foils can not be seen after the long beam irradiation for the 120kW user operation and 300kW high power beam demonstration at the RCS. In order to examine the characteristic of the HBC foils, various beam studies were carried out. The beam-irradiated spot at the foil was measured by scanning the foil setting position, the charge exchange efficiency was evaluated with various thickness foils, and the effect of the SiC fibers supporting the foil mounting was checked with different mounting foils. Beam study results obtained with using the HBC foils will be presented. In addition, the trends of outgas from the stripping foils and the deformations of the foils during the beam irradiation will be reported.

 
MOPEC066 Status of Mass Production of the ACS Cavity for the J-PARC Linac Energy Upgrade 618
 
  • H. Ao, K. Hirano, T. Morishita
    JAEA/LINAC, Ibaraki-ken
  • H. Asano, N. Ouchi, N. Tsubota
    JAEA/J-PARC, Tokai-mura
  • K. Hasegawa
    JAEA, Ibaraki-ken
  • F. Naito, K. Takata
    KEK, Ibaraki
  • V.V. Paramonov
    RAS/INR, Moscow
  • Y. Yamazaki
    J-PARC, KEK & JAEA, Ibaraki-ken
 
 

The mass production of the ACS (Annular Coupled Structure) cavity started from March 2009 for the J-PARC Linac energy upgrade from 181 MeV to 400 MeV. This upgrade project requires 18 ACS accelerating modules and two debunchers additionally within three years. The construction schedule is so tight that we have to optimize the fabrication process. For example the geometrical beta is varied for each accelerating module, thus the several test cells were fabricated and for the all beta before the mass production to confirm the initial design and the frequency tuning procedure. This paper describes our approach for the mass production and the current status and results.

 
MOPE001 A Tank Circuit Monitoring a Large Number of Antiprotons in MUSASHI 948
 
  • H. Higaki, H. Okamoto
    HU/AdSM, Higashi-Hiroshima
  • Y. Enomoto, C.H. Kim, N. Kuroda, Y. Matsuda, H.A. Torii, Y. Yamazaki
    The University of Tokyo, Institute of Physics, Tokyo
  • H. Hori
    MPQ, Garching, Munich
  • H. Imao, Y. Kanai, A. Mohri, Y. Nagata
    RIKEN, Wako, Saitama
  • K. Kira
    Hiroshima University, Graduate School of Advanced Sciences of Matter, Higashi-Hiroshima
  • K. Michishio
    Tokyo University of Science, Tokyo
 
 

In Antiproton Decelerator (AD) at CERN, unique low energy antiproton beams of 5.6 MeV have been delivered for physics experiments. Furthermore, the RFQ decelerator (RFQD) dedicated for Atomic Spectroscopy And Collisions Using Slow Antiprotons (ASACUSA) collaboration enables the use of 100 keV pulsed antiproton beams for experiments. What is more, Mono-energetic Ultra Slow Antiproton Source for High-precision Investigations (MUSASHI) in ASACUSA can produce antiproton beams with the energy of 100 ~ 1000 eV. Since the successful extraction of 250 eV antiproton beams reported in 2005, continuous improvements on beam quality and equipments have been conducted. Here, the basic properties of a tank circuit attached to MUSASHI trap are reported. Signals from a tank circuit provide information on the trapped antiprotons, as Shottky signals do for high energy beams in accelerators. In fact, it is known that this kind of trap-based beams are physically equivalent with those in a FODO lattice. Monitoring the tank circuit signals will be useful for on-line handling of the low energy antiproton beams from MUSASHI.

 
THPEC058 Development of MUSASHI, a Mono-energetic Ultra-slow Antiproton Beam Source 4188
 
  • N. Kuroda, Y. Enomoto, H. Imao, C.H. Kim, Y. Matsuda, H.A. Torii, Y. Yamazaki
    The University of Tokyo, Institute of Physics, Tokyo
  • H. Higaki
    HU/AdSM, Higashi-Hiroshima
  • H. Hori
    MPQ, Garching, Munich
  • Y. Kanai, A. Mohri, Y. Nagata
    RIKEN, Wako, Saitama
  • K. Kira
    Hiroshima University, Graduate School of Advanced Sciences of Matter, Higashi-Hiroshima
  • K. Michishio
    Tokyo University of Science, Tokyo
  • H. Saitoh
    University of Tokyo, Chiba
  • M. Shibata
    KEK, Tsukuba
 
 

The ASACUSA collaboration at CERN has been developed a unique Mono-energetic Ulta-Slow Antiproton beam Source for High-precision Investigation (MUSASHI) for collision studies between antiproton and atoms at very low energy region, which also used as an intense ultra-low energy antiproton source for the synthesis of antihydrogen atoms in order to test CPT symmetry. MUSASHI consists of a multi-ring electrode trap housed in a bore surrounded by a superconducting solenoid, which works with a sequential combination of the CERN Antiproton Decelerator and the Radio-Frequency Quadrupole Decelerator. GM-type refrigerators were used to cool the solenoid and also the bore at 4K to avoid losses of antiprotons with residual gasses. Up to 1.8 millions of antiprotons per one AD cycle were successfully trapped and cooled. MUSASHI achieved to accumulate more than 12 millions of cold antiprotons by stacking several AD shots. Such cooled antiprotons were extracted as 150 or 250eV beams with various bunch lengths from 2 micoroseconds to 30 seconds long, whose energy width was the order of sub-eV. The beam intensity was enhanced by a radial compression technique for the trapped antiproton cloud.