Paper | Title | Page |
---|---|---|
TUPEA008 | An Ultra-low Emittance Design for Energy Recovery Linac (ERL) Injector | 1342 |
|
||
One of the most important issues for ERL injectors is to generate electron beams with ultra-low emittance and to accelerate the beams through the injector without emittance growth. For this purpose, we have developed an efficient simulation code to investigate the mechanism of emittance growth due to space charge effect and to exploit its suppression method. In this code, the longitudinal motion is treated by the one-dimensional difference equations for macro-particles, while the radial motion is solved by the envelope equations for the pieces of sliced bunch. We find that the total emittance takes a minimum when all ellipses of sliced envelope have the same direction on the a-a' plane, where a is the amplitude of sliced envelope and a' its derivative along the longitudinal direction. The parameters of a 5 MeV injector were optimized by this code, assuming that the voltage of the DC electron gun is 330 kV and the initial particle distribution at the exit of the gun has a uniform ellipse. Even for such a low voltage gun, we obtained a minimum value of the rms normalized emittance, 0.10 mm, and the rms bunch length, 0.83 mm, the values of which were calculated by using PARMELA. |
||
TUPE029 | Spectral Measurement of VUV CHG at UVSOR-II | 2206 |
|
||
Light source technologies based on laser seeding are under development at the UVSOR-II electron storage ring. In the past experiments, we have succeeded in generating coherent DUV (Deep Ultra-Violet) harmonics with various polarizations. A spectrum measurement experiment of CHG (Coherent Harmonic Generation) was carried out by using a spectrometer of from visible to DUV range. In order to diagnose spectra of shorter-wavelength CHG, a spectrometer for VUV (Vacuum Ultra-Violet) has been constructed and the VUV CHG was measured. In addition, we try to use a seeding light source based on not only fundamental of Ti: Sapphire laser and the harmonics generated from non-linear crystals but also HHG (High Harmonic Generation) in a gas for the CHG experiment. Now the HHG system is under development. In this presentation, we introduce the VUV spectral measurement system and the HHG system and also report about comparison between the results of the current CHG experiments and design studies of numerical calculation for them. |
||
WEPEA039 | Status of Top-up Operation in UVSOR-II | 2576 |
|
||
UVSOR-II is a low emittance, 750 MeV synchrotron light source. Low emittance and low energy synchrotron light sources naturally suffered from short electron lifetime due to Touschek effect. Top-up operation is a solution for overcoming the effect. In the UVSOR-II, trials of multi-bunch top-up operation at the full energy were started from 2008. In the trials, we have succeeded in keeping the stored beam current around 300 mA for 12 hours. From this fiscal year, single bunch injection was started for single bunch user operations and for experiments on advanced light source development such as Free Electron Laser (FEL), Coherent Synchrotron Radiation (CSR), Coherent Harmonic Generation (CHG), which require single bunch or 2-bunch filling operation. We have already performed single bunch top-up operation in user time with the stored beam current of 50 mA. And FEL lasing with top-up operation was also achieved at the laser wavelength of 215 nm with the stored beam current of 130 mA / 2-bunch. In the FEL lasing experiment, we succeeded in keeping the average power of FEL around 130 mW for three hours. |
||
WEPEA038 | Present Status and Upgrade Plan on Coherent Light Source Developments at UVSOR-II | 2573 |
|
||
UVSOR, a 750 MeV synchrotron light source of 53m circumference had been operated for more than 20 years. After a major upgrade in 2003, this machine was renamed to UVSOR-II. The ring is now routinely operated with low emittance of 27 nm-rad and with four undulators. By utilizing a part of the existing FEL system and an ultra-short laser system, coherent synchrotron radiation in THz range and coherent harmonic generation in VUV range have been extensively studied under international collaborations. Based on results obtained from previous coherent light source developments, a new five-year research program on the coherent light source developments has been started from FY2008, which includes creation of a new 4-m long straight section by moving the injection point, upgrades of the undulator and the laser system and construction of dedicated beam-lines for these coherent light sources. Present status and upgrade plan on these coherent light sources at UVSOR-II will be presented at the conference. |