A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Wuestefeld, G.     [Wüstefeld, G.]

Paper Title Page
MOPD084 Highly sensitive beam size monitor for pA currents at the MLS electron storage ring 894
 
  • C. Koschitzki, A. Hoehl, R. Klein, R. Thornagel
    PTB, Berlin
  • J. Feikes, M.V. Hartrott, G. Wüstefeld
    Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Elektronen-Speicherring BESSY II, Berlin
 
 

For the operation of the Metrology Light Source (MLS)*, the electron storage ring of the Physikalisch-Technische Bundesanstalt (PTB), as a primary radiation source standard all storage ring parameters have to be known absolutely. For the measurement of the electron beam size and the monitoring of the stability of the orbit location a new imaging system has been set up, that operates at very different intensity levels covering more than 11 decades, given by the variation of the electron beam current. The system uses a commercial zoom lens for the achromatic optical imaging of the electron beam source point onto two different camera systems. One camera system is for life-imaging of the electron beam at electron beam currents from 200 mA down to some μA. The second system is a cooled CCD-camera that allows imaging of the electron beam size and location at very low currents, down to only one stored electron.


* R. Klein et al., Phys. Rev. ST-AB 11, 110701 (2008).

 
WEPEA014 Optics calibration at the MLS and at BESSY II 2505
 
  • P.O. Schmid, P. Kuske
    Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin
  • D.B. Engel, J. Feikes, R. Müller, G. Wüstefeld
    Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Elektronen-Speicherring BESSY II, Berlin
 
 

In this paper we present the results of our studies employing LOCO and MML for optics calibration at the MLS and at the BESSY II storage rings. Both the standard user modes and dedicated low alpha modes were analysed.

 
WEPEA015 Coherent THz Measurements at the Metrology Light Source 2508
 
  • G. Wüstefeld, J. Feikes, M.V. Hartrott, M. Ries
    Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Elektronen-Speicherring BESSY II, Berlin
  • A. Hoehl, R. Klein, R. Müller, A. Serdyukov, G. Ulm
    PTB, Berlin
 
 

The Metrology Light Source* is the first storage ring optimized for THz generation**. It applies a bunch shortening mode, based on a flexible momentum compaction factor 'alpha'. The emitted THz radiation is very sensitive to the machine tuning, its power could vary by many orders of magnitude. We report on coherent THz signal intensities as a function of different machine parameters, such as beam energy, beam current, rf voltage and alpha tuning.


* R. Klein et al., Phys. Rev. ST. Accel. Beams vol. 11, 110701 (2008). ** J. Feikes et al., The Metrology Light Source: The First Electron Storage Ring Optimized for Generating Coherent THz Radiation, submitted to Phys. Rev. ST. Accel. Beams (2009).

 
WEPD011 Mini-beta Sections in the Storage Ring BESSY II 3108
 
  • J. Bahrdt, W. Frentrup, A. Gaupp, M. Scheer, F. Schäfers, G. Wüstefeld
    Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Elektronen-Speicherring BESSY II, Berlin
 
 

At BESSY II photon energies above 2keV can be produced only with bending magnets, a permanent magnet wiggler, superconducting (SC) wavelength shifters and a SC-wiggler. The wiggler brilliance suffers from the depth of field effect and the bending magnets and wavelength shifters produce the X-rays only with a single pole. Experiments such as HIgh Kinetic Energy photoelectron spectroscopy (HIKE) or microspectroscopy on nanostructured materials demand a high brilliance and flux as it is provided by a small period cryogenic undulator. This paper discusses the requirements for the operation of small gap cryogenic devices at BESSY II. A scheme with two adjacent, vertical low beta sections inside of one of the long straight sections is suggested. The straight is divided into two parts by a quadrupole triple in the center. An optic with an increased, vertical beta tune by 0.5 is presently studied. The optics outside of the low beta section and the horizontal tune are kept unchanged.