Paper | Title | Page |
---|---|---|
MOPE050 | Multi Optical Transition Radiation System for ATF2 | 1083 |
|
||
In this paper we describe the design, installation and first calibration tests of a Multi Optical Transition Radiation (OTR) monitor system in the beam diagnostic section of the Extraction (EXT) line of ATF2, close to the multi wire scanner system. This system will be a valuable tool for measuring beam sizes and emittances from the ATF Damping Ring (DR). With an optical resolution of about 2 um an original OTR design demonstrated the ability to measure a 5.5um beam size in one beam pulse and to take many fast measurements. This gives the OTR the ability to measure the beam emittance with high statistics, giving a low error and a good understanding of emittance jitter. Furthermore the near by wire scanners will be a definitive test of the OTR as a beam emittance diagnostic device. The muti-OTR system design proposed here is based on the existing OTR1X, located after the septums at the entrance of the EXT line. |
||
MOPE100 | The Straightness Monitor System at ATF2 | 1218 |
|
||
The demonstration of the stability of the position of the focused beam is a primary goal of the ATF2 project. We have installed a laser interferometer system that will eventually correct the measurement of high-precision Beam Position Monitors used in the ATF2 Final Focus Steering Feedback for mechanical motion or vibrations. Here, we describe the installed system and present preliminary data on the short- and long-term mechanical stability of the BPM system. |
||
WEOBMH01 | Operational Experiences Tuning the ATF2 Final Focus Optics Towards Obtaining a 37nm Electron Beam IP Spot Size | 2383 |
|
||
The primary aim of the ATF2 research accelerator is to test a scaled version of the final focus optics planned for use in next-generation linear lepton colliders. ATF2 consists of a 1.3 GeV linac, damping ring providing low-emittance electron beams (<12pm in the vertical plane), extraction line and final focus optics. The design details of the final focus optics and implementation at ATF2 are presented elsewhere* . The ATF2 accelerator is currently being commissioned, with a staged approach to achieving the design IP spot size. It is expected that as we implement more demanding optics and reduce the vertical beta function at the IP, the tuning becomes more difficult and takes longer. We present here a description of the implementation of the overall tuning algorithm and describe operational experiences and performances * Beam-Based Alignment, Tuning and Beam Dynamics Studies for the ATF2 Extraction Line and Final Focus System. Glen R. White , S. Molloy, M. Woodley, (SLAC). EPAC08-MOPP039, SLAC-PUB-13303. |
||
|
||
MOPE070 | Cavity Beam Position Monitor System for ATF2 | 1140 |
|
||
The Accelerator Test Facility 2 (ATF2) in KEK, Japan, is a prototype scaled demonstrator system for the final focus required for a lepton linear collider. The ATF2 beam-line is instrumented with a total of 38 C and S band resonant cavity beam position monitors (BPM) with associated mixer electronics and digitizers. The current status of the BPM system is described, with a focus on operational techniques and performance. |
||
WEPD057 | Linac Energy Management for LCLS | 3224 |
|
||
Linac Energy Management (LEM) is a control system program which calculates, and optionally implements, magnet setpoint settings (BDESs) following a change in Energy (such as a change in the number, phase, and amplitude of active klystrons). The change is made relative to those magnets' existing BDES setpoints by a factor encoding the change in energy. LEM is necessary because changes in the number, phase, and amplitude of the active klystrons (the so-called "Klystron complement") change the beam's rigidity, and therefore, to maintain constant optics, one has to change focusing gradients and bend fields. This paper describes the basic process and some of the implementation lessons learned for LEM at the LCLS. |
||
THPD077 | Linear Collider Test Facility: Twiss Parameter Analysis at the IP/Post-IP location of the ATF2 beam line | 4458 |
|
||
At the first stage of the ATF2 beam tuning, vertical beam size is usually bigger than 3um at the IP. Beam waist measurements using wire scanners and a laser wire are usually performed to check the initial matching of the beam through to the IP. These measurements are described in this paper for the optics currently used (βx=4cm and βy=1mm). Software implemented in the control room to automate these measurements with integrated analysis is also described. Measurements showed that beta functions and emittances were within errors of measurements when no rematching and coupling corrections were done. However, it was observed that the waist in the horizontal (X) and vertical (Y) plane was abnormally shifted and simulations were performed to try to understand these shifts. They also showed that multiknobs are needed in the current optics to correct simultaneously αx, αy and the horizontal dispersion (Dx). Such multiknobs were found and their linearity and orthogonality were successfully checked using MAD optics code. The software for these multiknobs was implemented in the control room and waist scan measurements using the αy knob were successfully performed. |
||
THPD080 | Coupling Measurements in ATF2 Extraction Line | 4467 |
|
||
The purpose of ATF2 is to deliver a beam with stable very small spotsizes as required for future linear colliders such as ILC or CLIC. To achieve that, precise controls of the aberrations such as dispersion and coupling are necessary. Theoretically, the complete reconstruction of the beam matrix is possible from the measurements of horizontal, vertical and tilted beam sizes, combining skew quadrupole scans at several wire-scanner positions. Such measurements were performed in the extraction line of ATF2 in May 2009. We present analysis results attempting to resolve the 4X4 beam matrix and discuss the experimental limitations of 4D emittance measurements with wire scanners. |
||
WEPE041 | A Superconducting Magnet Upgrade of the ATF2 Final Focus | 3440 |
|
||
The KEK ATF2 facility, with a well instrumented beam line and Final Focus (FF), is a proving ground for linear collider (LC) technology to demonstrate the extreme beam demagnification and spot stability needed for a LC FF*. ATF2 uses water cooled magnets but the baseline ILC calls for a superconducting FF**. Thus we plan to replace some ATF2 FF magnets with superconducting ones made via direct wind construction as planned for the ILC. With no cryogenic supply at ATF2, we look to cool magnets and current leads with a few cryocoolers. ATF2 FF coil winding is underway at BNL and production warm magnetic measurements indicate good field quality. Having FF magnets with larger aperture and better field quality than present FF might allow reducing the beta function at the FF for study of focusing regimes relevant to CLIC. Our ATF2 magnet cryostat will have laser view ports for cold mass movement measurement and FF support and stabilization requirements under study. We plan to make stability measurements at BNL and KEK to relate ATF2 FF magnet performance to that of a full length ILC R&D prototype at BNL. We want to be able to predict LC FF performance with confidence. * ATF2 proposal, volumes 1 and 2 at http://lcdev.kek.jp/ILC-AsiaWG/WG4notes/atf2/proposal/index.html |
||
THPE020 | Scenarios for the ATF2 Ultra-Low Betas Proposal | 4554 |
|
||
The current ATF2 Ultra-Low beta proposal was designed to achieve 20nm vertical IP beam size without considering the multipolar components of the FD magnets. In this paper we describe different scenarios that avoid the detrimental effect of these multipolar errors in the FD. The simplest approach consists in modifying the optics but other solutions are studied as the introduction of new higher order magnets or the replacement of the FD with SC technology. The practical aspects of such an upgrade are the tuning performance and the compatibility with existing devices and instrumentation. These are fully addressed in the paper. |