Paper | Title | Page |
---|---|---|
THPD009 | Study on the High Order Modes of the 3.5cell Cavity at Peking University | 4296 |
|
||
As part of the updated DC-SC injector, a 3.5cell cavity has been fabricated at Peking University, which includes two Coaxial High Order Mode (HOM) couplers. The effect of the HOM couplers has been studied by numerical simulation and measurement. The results are highly uniform and show that the two couplers do effectively damp the HOMs. |
||
THPEA061 | A Dual-moded Cavity for RF Breakdown Studies | 3813 |
|
||
The phenomenon of rf breakdown presents a technological limitation in the application of high-gradient particle acceleration in normal conducting rf structures. Attempts to understand the onset of this phenomenon and to study its limits with different materials, cell shapes, and pulse widths has been driven in recent years by linear collider development. One question of interest is the role magnetic field plays relative to electric field. A design is presented for a single, non-accelerating, rf cavity resonant in two modes, which, driven independently, allow the rf magnetic field to be increased on the region of highest electric field without affecting the latter. The design allows for the reuse of the cavity with different samples in the high-field region. Available high-power data will also be presented. |
||
THPEA013 | Advances in X-band TW Accelerator Structures Operating in the 100 MV/m Regime | 3702 |
|
||
A CERN-SLAC-KEK collaboration on high gradient X-band accelerator structure development for CLIC has been ongoing for three years. The major outcome has been the demonstration of stable 100 MV/m gradient operation of a number of CLIC prototype structures. These structures were fabricated basically using the technology developed from 1994 to 2004 for the GLC/NLC linear collider initiative. One goal has been to refine the essential parameters and fabrication procedures needed to realize such high gradient routinely. Another goal has been to develop structures with stronger dipole mode damping than those for GLC/NLC. The latter requires that surface temperature rise during the pulses be higher, which may increase the breakdown rate. Structures with heavy damping will be tested in late 2009/early 2010, and this paper will present these results together with some of the earlier results from non-damped structures and structures built with a quadrant geometry. |