Paper | Title | Page |
---|---|---|
MOPD028 | Commissioning of a New CW Radio Frequency Quadrupole at GSI | 741 |
|
||
The super heavy element research is one of the outstanding projects at GSI. At SHIP* six new elements have been discovered; moreover, nuclear chemical experiments with transactinides were recently performed at TASCA**. This experimental program strongly benefits from high average beam intensities. In the past beam currents were raised significantly by a number of improvements. The present upgrade program comprises the installation of a superconducting (sc) 28 GHz ECR ion source, a new frontend (low energy beam transport and RFQ), and, in the long term, an sc cw Linac. For the short term, the new RFQ will raise the duty factor by a factor of two (50%), limited by the following accelerator only. This bottleneck will be resolved by the applied cw Linac. Beam tests with a newly developed sc CH cavity are scheduled for 2012. The setup of the RFQ as the major upgrade of the 20 year old HLI*** is in progress, the commissioning will be finished in March 2010. Besides a higher duty factor, improved longitudinal beam quality and transmission are expected. This paper reports on the challenging rf and beam commissioning. * Separator for Heavy Ion Reaction Products |
||
MOPD036 | Simulations of Buncher-cavities with Large Apertures | 765 |
|
||
Buncher-cavities re-accelerate, bunch or re-bunch particle beams. A special form of these buncher-rf-cavities is a spiral-structure. Two different spiral resonators were simulated and build for the new EBIS LINAC at Brookhaven National Laboratory. These buncher-cavities have a remarkably large aperture of 100 mm. To optimize the cavities to the BNL-frequency of 100 MHz, simulations have been carried out. The impact of changing the gap width, drifttube-, and spiral arm-length on the design of the spiral cavities, has been analyzed. Results of simulations and measurement will be presented. |