A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Vivoli, A.

Paper Title Page
WEOBMH03 The Baseline Positron Production and Capture Scheme for CLIC 2389
 
  • O. Dadoun, I. Chaikovska, P. Lepercq, F. Poirier, A. Variola
    LAL, Orsay
  • R. Chehab
    IN2P3 IPNL, Villeurbanne
  • L. Rinolfi, A. Vivoli
    CERN, Geneva
  • V.M. Strakhovenko
    BINP SB RAS, Novosibirsk
  • C. Xu
    IHEP Beijing, Beijing
 
 

The CLIC study considers the hybrid source using channeling as the baseline for unpolarised positron production. The hybrid source uses a few GeV electron beam impinging on a crystal tungsten target. With the tungsten crystal oriented on its < 111 > axis it results an intense, relatively low energy photon beam due mainly to channeling radiation. Those photons are then impinging on an amorphous tungsten target producing positrons by e+e- pair creation. The downstream capture section is based on an adiabatic matching device and a 2 GHz pre-injector linac. The resulting studies are presented here.

 

slides icon

Slides

 
WEPE085 Parameter Scan for the CLIC Damping Rings under the Influence of Intrabeam Scattering 3542
 
  • F. Antoniou
    National Technical University of Athens, Zografou
  • M. Martini, Y. Papaphilippou, A. Vivoli
    CERN, Geneva
 
 

Due to the high bunch density, the output emittances of the CLIC Damping Rings (DR) are strongly dominated by the effect of Intrabeam Scattering (IBS). In an attempt to optimize the ring design and using classical IBS formalisms and approximations, the scaling of the extracted emittances and IBS growth rates is being studied, with respect to several ring parameters including energy, bunch charge, optics and wiggler characteristics. Results from the simulations using a multi-particle tracking code are also presented.

 
WEPE090 Intra-Beam Scattering in the CLIC Damping Rings 3557
 
  • A. Vivoli, M. Martini
    CERN, Geneva
 
 

The CLIC 3 TeV nominal design requires very low emittance of the electron and positron beams to be reached in the damping rings. Due to low energy and to relatively high bunch charge and ultra-low emittance, Intra-Beam Scattering (IBS) effect is very strong and an accurate calculation is needed to check if the required emittance is effectively reached. For this reason it is being developed at CERN a new Software for IBS and Radiation Effects (SIRE), which simulates the evolution of the beam particle distribution in the damping rings, taking into account radiation damping, IBS and quantum excitation. In this paper we present the results of our simulations performed with SIRE on the current lattice of the CLIC damping rings.

 
WEPE089 Design Optimisation for the CLIC Damping Rings 3554
 
  • Y. Papaphilippou, F. Antoniou, M.J. Barnes, S. Bettoni, S. Calatroni, P. Chiggiato, R. Corsini, A. Grudiev, R. Maccaferri, M. Modena, L. Rinolfi, G. Rumolo, D. Schoerling, D. Schulte, M. Taborelli, A. Vivoli
    CERN, Geneva
  • E.B. Levichev, S.V. Sinyatkin, P. Vobly, K. Zolotarev
    BINP SB RAS, Novosibirsk
 
 

The CLIC damping rings should produce the ultra-low emittance necessary for the high luminosity performance of the collider. This combined to the high bunch charge present a number of beam dynamics and technical challenges for the rings. Lattice studies have been focused on low emittance cells with optics that reduce the effect Intra-beam scattering. The final beam emittance is reached with the help of super-conducting damping wigglers. Results from recent simulations and prototype measurements are presented, including a detailed absorption scheme design. Collective effects such as electron cloud and fast ion instability can severely limit the performance and mitigation techniques have been identified and tested. Tolerances for alignment and technical system design such as kickers, RF cavities, magnets and vacuum have been finally established.