A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Variola, A.

Paper Title Page
WEOBMH03 The Baseline Positron Production and Capture Scheme for CLIC 2389
 
  • O. Dadoun, I. Chaikovska, P. Lepercq, F. Poirier, A. Variola
    LAL, Orsay
  • R. Chehab
    IN2P3 IPNL, Villeurbanne
  • L. Rinolfi, A. Vivoli
    CERN, Geneva
  • V.M. Strakhovenko
    BINP SB RAS, Novosibirsk
  • C. Xu
    IHEP Beijing, Beijing
 
 

The CLIC study considers the hybrid source using channeling as the baseline for unpolarised positron production. The hybrid source uses a few GeV electron beam impinging on a crystal tungsten target. With the tungsten crystal oriented on its < 111 > axis it results an intense, relatively low energy photon beam due mainly to channeling radiation. Those photons are then impinging on an amorphous tungsten target producing positrons by e+e- pair creation. The downstream capture section is based on an adiabatic matching device and a 2 GHz pre-injector linac. The resulting studies are presented here.

 

slides icon

Slides

 
WEPEC002 Titanium Nitride Coating as a Multipactor Suppressor 2887
 
  • W. Kaabi, A. Variola
    LAL, Orsay
  • A. Brinkmann
    DESY, Hamburg
  • G. Keppel, V. Palmieri
    INFN/LNL, Legnaro (PD)
  • I. Montero
    CSIC, Madrid
 
 

LAL-Orsay is developing an important effort on R&D and technology studies on RF power couplers for superconductive cavities. One of the most critical components of those devices is the ceramic RF window that allows the power flux to be injected in the coaxial line. The presence of a dielectric window on a high power RF line has a strong influence on the multipactor phenomena. The most important method to reduce the multipactor is to decrease the secondary emission yield of the ceramic window. Due to its low Secondary electron Emission Yield (SEY), TiN thin film is used as a multipactor suppressor coating on RF ceramic coupler windows. In this frame work, TiN deposition was made by magnetron reactive sputtering. XPS and XRD analysis were performed to control the film composition and stoechiometry. Coating thickness was optimized so that the TiN coating effectively reduces the SEY but does not cause excessive heating, due to ohmic loss. For this purpose, SEY measurements on covered and uncovered TiN Alumina substrates, multipactor level breakdown on TiN coated Cupper substrates and RRR measurements were performed for different deposit thicknesses.

 
TUPEB003 The SuperB Project Accelerator Status 1518
 
  • M.E. Biagini, D. Alesini, R. Boni, M. Boscolo, T. Demma, A. Drago, M. Esposito, S. Guiducci, F. Marcellini, G. Mazzitelli, M.A. Preger, P. Raimondi, C. Sanelli, M. Serio, A. Stecchi, A. Stella, S. Tomassini, M. Zobov
    INFN/LNF, Frascati (Roma)
  • M.A. Baylac, J.-M. De Conto, Y. Gomez-Martinez, N. Monseu, D. Tourres
    LPSC, Grenoble
  • K.J. Bertsche, A. Brachmann, Y. Cai, A. Chao, M.H. Donald, A.S. Fisher, D. Kharakh, A. Krasnykh, N. Li, D.B. MacFarlane, Y. Nosochkov, A. Novokhatski, M.T.F. Pivi, J. Seeman, M.K. Sullivan, A.W. Weidemann, J. Weisend, U. Wienands, W. Wittmer, A.C. de Lira
    SLAC, Menlo Park, California
  • S. Bettoni
    CERN, Geneva
  • B. Bolzon, L. Brunetti, A. Jeremie
    IN2P3-LAPP, Annecy-le-Vieux
  • J. Bonis, G. Le Meur, B.M. Mercier, F. Poirier, C. Prevost, C. Rimbault, F. Touze, A. Variola
    LAL, Orsay
  • F. Bosi
    INFN-Pisa, Pisa
  • A. Chancé, F. Méot, O. Napoly
    CEA, Gif-sur-Yvette
  • R. Chehab
    IN2P3 IPNL, Villeurbanne
  • I. Koop, E.B. Levichev, S.A. Nikitin, P.A. Piminov, D.N. Shatilov, S.V. Sinyatkin
    BINP SB RAS, Novosibirsk
  • S.M. Liuzzo, E. Paoloni
    University of Pisa and INFN, Pisa
 
 

The SuperB project is an international effort aiming at building in Italy a very high luminosity e+e- (1036 cm-2 sec-1) asymmetric collider at the B mesons cm energy. The accelerator design has been extensively studied and changed during the past year. The present design, - based on the new collision scheme, with large Piwinski angle and the use of 'crab' sextupoles, which has been successfully tested at the DAPHNE Phi-Factory at LNF Frascati, - provides larger flexibility, better dynamic aperture and in the Low Energy Ring spin manipulation sections, needed for having longitudinal polarization of the electron beam at the Interaction Point. The Interaction Region has been further optimized in terms of apertures and reduced backgrounds in the detector. The injector complex design has been also updated. A summary of the design status, including details on lattice and spin manipulation will be presented in this paper.

 
TUPEB057 Positron Production and Capture based on Low Energy Electrons for SuperB 1650
 
  • F. Poirier, I. Chaikovska, O. Dadoun, P. Lepercq, R. Roux, A. Variola
    LAL, Orsay
  • R. Boni, S. Guiducci, M.A. Preger, P. Raimondi
    INFN/LNF, Frascati (Roma)
  • R. Chehab
    IN2P3 IPNL, Villeurbanne
 
 

Providing a high quality and sufficient high current positron beam for the ultra high luminosity B-factory SuperB is a major goal. In this paper a proposition for positrons production and capture scheme based on low energy electrons up to1 GeV is presented. For this technique, several types of flux concentrator used to capture the positrons are being studied. The following accelerating section bringing the positrons up to 280 MeV and the total yield for L-band and S-band type accelerators are given. Also the result of the benchmark between ASTRA and a LAL code based on Geant4 toolkit simulation is discussed.

 
THPEA007 The Injection System of the INFN-SuperB Factory Project: Preliminary Design 3685
 
  • R. Boni, S. Guiducci, M.A. Preger, P. Raimondi
    INFN/LNF, Frascati (Roma)
  • A. Chancé
    CEA, Gif-sur-Yvette
  • O. Dadoun, F. Poirier, A. Variola
    LAL, Orsay
  • J. Seeman
    SLAC, Menlo Park, California
 
 

The ultra high luminosity B-factory (SuperB) project of INFN requires a high performance and reliable injection system, providing electrons at 4 GeV and positrons at 7 GeV, to fulfill the very tight requirements of the collider. Due to the short beam lifetime, continuous injection of electrons and positrons in both HER and LER rings is necessary to keep the average luminosity at a high level. Polarized electrons are required for experiments and must be delivered by the injection system, due to the beam lifetime shorter than the polarization build-up: they will be produced by means of a SLAC-SLC polarized gun. One or two 1 GeV damping rings are used to reduce e+ and e- emittances. Two schemes for positron production are under study, one with electron-positron conversion at low energy (<1 Gev), the second at 6 GeV with a recirculation line to bring the positrons back to the damping ring. Acceleration through the Linac is provided by a S-band RF system made of traveling wave, room temperature accelerating structures. An option to use the C-band technology is also presented.

 
THPE060 A Compact Ring for the ThomX-ray Source 4650
 
  • A. Loulergue
    SOLEIL, Gif-sur-Yvette
  • C. Bruni, J. Haissinski, M. Joré, M. Lacroix, A. Variola
    LAL, Orsay
 
 

One advantage of X-ray sources based on Compton Back Scattering (CBS) processes is that such compact machines can produce an intense flux of monochromatic X-rays. CBS results from collisions between laser pulses and relativistic electron bunches. Aiming at high X-ray flux, one possible configuration combining a low emittance linear accelerator with a compact storage ring and a high gain laser cavity has been adopted by the ThomX project. We present here the main ring lattice characteristics in terms of baseline optics, possible other tunings such as low or negative momentum compaction, and orbit correction schemes. In addition, non-linear beam dynamics aspects including fringe field components as well as higher multipole tolerances are presented.