A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Valles, N.R.A.

Paper Title Page
WEPEC065 Coupled Electromagnetic-Thermal-Mechanical Simulations of Superconducting RF Cavities 3040
 
  • S.E. Posen, M. Liepe, N.R.A. Valles
    CLASSE, Ithaca, New York
 
 

The high magnetic and electric radio-frequency fields in superconducting microwave cavities cause heating of the inner cavity surface and generate Lorentz-forces, which deform the shape of the cavity and thereby result in a shift of the fundamental mode frequency. 3-dimensional numerical codes can create complex coupled simulations of the electromagnetic fields excited in a cavity, of heat dissipation and heat transfer, as well as of mechanical effects. In this paper we summarize our simulation results using the engineering simulation package ANSYS.

 
WEPEC068 Cavity Design for Cornell's Energy Recovery Linac 3046
 
  • N.R.A. Valles, M. Liepe
    CLASSE, Ithaca, New York
 
 

This paper discusses the optimization of superconducting RF cavities to be used in Cornell's Energy Recovery Linac, a next generation light source. We discuss the determination of a parameter corresponding to beam break-up current and the results of introducing a realistic higher-order-mode absorber constructed of carbon nanotubes rather than a ferrite based absorber. We conclude by comparing the threshold current of the new design and show differences are due to the new absorber material.