Paper | Title | Page |
---|---|---|
TUPEB076 | Development of hollow electron beams for proton and ion collimation | 1698 |
|
||
Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable material damage. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and built. Its performance and stability were measured at the Fermilab test stand. The gun will be installed in one of the existing Tevatron electron lenses for preliminary tests of the hollow-beam collimator concept, addressing critical issues such as alignment and instabilities of the overlapping proton and electron beams. |
||
TUPD068 | Simulations of Head-on Beam-Beam Compensation at RHIC and LHC | 2081 |
|
||
Electron lenses are proposed as a way to mitigate head-on beam-beam effects for the LHC upgrade. An extensive effort was put together within the US LARP in order to develop numerical simulations of beam-beam effects in the presence of electron lenses. In this report the results of beam-beam simulations for RHIC and LHC are presented. The effect of electron lenses is demonstrated and sensitivity of beam-beam compensation to imperfections is discussed. |
||
TUPD070 | Progress with Tevatron Electron Lens Head-on Beam-Beam Compensation | 2084 |
|
||
Tevatron electron lenses have been successfully used to mitigate bunch-to-bunch differences caused by long-range beam-beam interactions. For this purpose the electron beam with uniform transverse density distribution was used. Another planned application of the electron lens is the suppression of tune spread due to head-on beam-beam collisions. For this purpose, the transverse distribution of e-beam must be matched to that of the antiproton beam. In 2009, the gaussian profile electron gun was installed in one of the Tevatron electron lenses. We report on the first experiments with non-linear beam-beam compensation. Discussed topics include measurement and control of the betatron tune spread, importance of the beam alignment and stability, and effect of the electron lens on the proton and antiproton beam lifetime. |
||
THPE015 | Simplified Approach to Evaluation of Beam-beam Tune Spread Compression by Electron Lens | 4545 |
|
||
One of the possible ways to increase luminosity of hadron colliders is the compensation of beam-beam tune-spread with an electron lens (EL). At the same time, EL as an additional nonlinear element in the lattice can increase strength of nonlinear resonances so that its overall effect on the beam lifetime will be negative. Time-consuming numerical simulations are often used to study the effects of the EL. In this report we present a simplified model, which uses analytical formulae derived for certain electron beam profiles. Based on these equations the idealized shapes of the compressed tune spread can be rapidly calculated. Obtained footprints were benchmarked against several reference numerical simulations for the Tevatron in order to evaluate the selected configurations. One of the tested criteria was the so-called "folding" of the compensated footprint, which occurs when particles with different betatron amplitudes have the same tune shift. Also studied were the effects of imperfections, including misalignment of the electron and proton beams, and mismatch of their shapes. |