Paper | Title | Page |
---|---|---|
MOPEA052 | Sub-micrometer Resolution Transverse Electron Beam Size Measurement System based on Optical Transition Radiation | 193 |
|
||
Optical Transition Radiation (OTR) appearing when a charged particle crosses a boundary between two media with different dielectric properties has widely been used as a tool for transverse profile measurements of charged particle beams in various facilities worldwide. The resolution of the conventional monitors is defined by so-called Point Spread Function (PSF) dimension - the source distribution generated by a single electron and projected by an optical system onto a screen. In our experiment we managed to create a system which can practically measure the PSF distribution. We demonstrated that is it is non-uniform. In this paper we represent the development of a novel sub-micrometer electron beam profile monitor based on the measurements of the PSF structure. The visibility of the structure is sensitive to micrometer electron beam dimensions. In this report we shall represent the recent experimental results. The future plans on the optimization of the monitor will also be presented. |
||
MOPE022 | Development of Shintake Beam Size Monitor for ATF2 | 1011 |
|
||
In this paper, we describe a system design and current status of Shintake beam size monitor. Shintake monitor is a laser-based beam diagnostics tool, which provides a non-invasive measurement of transverse beam sizes. The interaction target probing the electron beam is interference fringes build up by the two coherent lasers that have narrow bandwidth and long coherent length. A scale of the target structure corresponds to approximately one fourth of the laser wave length, and the smallest measurable size reaches down to several tens of nanometers. The monitor we described here is installed at the virtual interaction point of the ATF2 beam line, which is built to confirm the proposed final focus system for Future Linear Colliders. We adopt second harmonics of Nd:YAG laser of 532 nm wavelength, and phase stabilization feedback system to allow to measure the designed beam size of about 37 nm. To widen a measurable range up to about 5 microns (wire scanner's range), we also prepare three crossing modes that change an effective wavelength for the fringes. The monitor is used to measure a focus size during the tuning process. The system is based on the Shintake monitor for FFTB. |
||
MOPE023 | Evaluation of Expected Performance of Shintake Beam Size Monitor for ATF2 | 1014 |
|
||
ATF2 is the final focus test facility for ILC to realize and demonstrate nanometer focusing. One of the goals of the ATF2 is a demonstration of a compact final focus system based on the local chromaticity correction. A designed beam size at the focal point is to be 37 nm in vertical. To achieve the goal, a beam size monitor capable of nanometer beam size measurement is inevitably needed. Shintake monitor satisfies the demands, and is installed at the virtual interaction point of the ATF2. Shintake monitor is a beam size monitor which uses laser interference fringe pattern to measure beam size. The beam test for the Shintake monitor was successful in measurement of signal modulation with the laser interference fringe pattern in November 2009. In April 2010, beam size of less than 1 micron was achieved. We have studied the error sources, and evaluated the total error to be less than 10% for 1 minute measurement. This paper is about the evaluation of the Shintake monitor performance by analyzing beam tests data. Most systematic error sources are well understood, so that we can estimate accuracy of beam size measurement when the beam size reaches 37nm. |
||
MOPE035 | Development of Electronics for the ATF2 Interaction Point Region Beam Position Monitor | 1050 |
|
||
Nanometer resolution Beam Position Monitors have been developed to measure and control beam position stability at the interaction point region of ATF2. The position of the beam focused has to be measured within a few nanometer resolution at the interaction point. In order to achieve this performance, electronics for this BPM was developed. Every component of the electronics have been simulated and checked by local test and using beam signal. We will explain each component and define their working range. Then, we will show the performance of the electronics measured with beam signal. |
||
MOPE100 | The Straightness Monitor System at ATF2 | 1218 |
|
||
The demonstration of the stability of the position of the focused beam is a primary goal of the ATF2 project. We have installed a laser interferometer system that will eventually correct the measurement of high-precision Beam Position Monitors used in the ATF2 Final Focus Steering Feedback for mechanical motion or vibrations. Here, we describe the installed system and present preliminary data on the short- and long-term mechanical stability of the BPM system. |
||
TUPD089 | Status and Future Plan of the Accelerator for Laser Undulator Compact X-ray Source (LUCX) | 2111 |
|
||
We have developed a compact X-ray source based on inverse Compton scattering of an electron beam and a laser pulse, which is stacked in an optical super-cavity, at LUCX accelerator in KEK. The accelerator consists of a photo-cathode rf-gun and an S-band accelerating tube and produces the multi-bunch electron beam with 100 bunches, 0.5nC bunch charge and 40MeV beam energy. It is planned to upgrade the accelerator and the super-cavity in order to increase the number of X-rays. A new RF gun with high mode separation and high Q value and a new klystron for the gun will be installed to provide good compensation with a high-intensity multi-bunch electron beam. A new optical super-cavity consisting of 4 mirrors is also being developed to increase the stacking power in the cavity and to reduce the laser size at the focal point. The first targets are to produce a multi-bunch electron beam with 1000 bunches, 0.5 nC bunch charge and 5 MeV beam energy in low energy mode and 100bunches, 2 nC and 40 MeV in high energy mode to generate X-rays by inverse Compton scattering. In this paper, the status and future plan of the accelerator will be reported. |
||
WEOBMH02 | Multi-bunch Beam Extraction using Strip-line Kicker at KEK-ATF | 2386 |
|
||
The beam extraction experiment using the strip-line kicker has been carried out at KEK-ATF. The specification of the International linear collider (ILC) is that the long bunch train (1320 - 5120 bunches), which has the bunch spacing of 189 - 480ns, is compressed to 3 or 6ns bunch spacing into the DR, and again decompressed from the DR. The kicker manipulates the changes of the bunch spacing. The kicker requires a fast rise/fall time (3 or 6ns) and a high repetition rate (3 or 6MHz). A multiple strip-line kicker system is the most promising candidate to realize the specification for the ILC*. The beam extraction experiment at KEK-ATF** using proto-type of the strip-line kicker was done by following parameters, up to 30 bunches of the multi-bunch in the DR, which has 5.6ns bunch spacing, are extracted bunch-by-bunch with 308ns interval to the extraction line. The stored multi-bunch was extracted successfully. The detail of the experiment and the result are reported. * T. Naito et. al., Proc. of PAC07, pp2772-2274. |
||
|
||
WEZMH02 | Instrumentation for the ATF2 Facility | 2397 |
|
||
This presentation will cover the development of the tuning methods, beam stabilization and reliability, and instrumentation including laser wires, high resolution BPMs and fast feedback, to achieve the beam of a few nano meters size required for the ILC final focus. |
||
|
||
MOPE070 | Cavity Beam Position Monitor System for ATF2 | 1140 |
|
||
The Accelerator Test Facility 2 (ATF2) in KEK, Japan, is a prototype scaled demonstrator system for the final focus required for a lepton linear collider. The ATF2 beam-line is instrumented with a total of 38 C and S band resonant cavity beam position monitors (BPM) with associated mixer electronics and digitizers. The current status of the BPM system is described, with a focus on operational techniques and performance. |
||
THPEC026 | Experimental Results of RF Gun and Generation of Multi Bunch Beam | 4104 |
|
||
At Laser Undulator Compact Source (LUCX) at KEK, we designed and made a new RF Gun with high mode separation of 8.6 MHz and high Q value as compared to earlier guns. This paper presents fabrication details, low power measurements and tuning procedures followed in making the gun cavity. We also discuss in detail, experimentation done using this gun and show the measurement results. Currently we produce 100 bunch per train but we plan to go for 300 or more bunch per train operation. This will make possible to have higher charge available for laser-beam collisions to generate high flux soft X-rays by Inverse Compton Scattering at our setup. |
||
THPEC031 | Multi-bunch Electron Beam Generation based on Cs-Te Photocathode RF-Gun at Waseda University | 4119 |
|
||
At Waseda University, we have been studying a high quality electron beam generation and its application experiments with Cs-Te photocathode RF-Gun. We have already succeeded in generating a stable high-charged single-bunch electron beam. To generate more intense electron beam, we designed a multi-bunch electron linac and developed the multi-pulse UV laser which irradiates to the cathode. The target values of the number of electron bunch and bunch charges are 100 bunches/train and 800 pC/bunch, respectively. In addition, we adopted the method of the amplitude modulation of the incident RF pulse to the S-band klystron in order to compensate the energy difference in each bunch because of the slow rise time of acceleration voltage in cavity and beam loading effect in the accelerating structure. In this conference, we will report design properties of our multi-bunch electron linac, the results of the multi-bunch electron beam diagnosis and the energy difference compensation using the RF amplitude modulation method. |
||
THPD080 | Coupling Measurements in ATF2 Extraction Line | 4467 |
|
||
The purpose of ATF2 is to deliver a beam with stable very small spotsizes as required for future linear colliders such as ILC or CLIC. To achieve that, precise controls of the aberrations such as dispersion and coupling are necessary. Theoretically, the complete reconstruction of the beam matrix is possible from the measurements of horizontal, vertical and tilted beam sizes, combining skew quadrupole scans at several wire-scanner positions. Such measurements were performed in the extraction line of ATF2 in May 2009. We present analysis results attempting to resolve the 4X4 beam matrix and discuss the experimental limitations of 4D emittance measurements with wire scanners. |
||
THPE020 | Scenarios for the ATF2 Ultra-Low Betas Proposal | 4554 |
|
||
The current ATF2 Ultra-Low beta proposal was designed to achieve 20nm vertical IP beam size without considering the multipolar components of the FD magnets. In this paper we describe different scenarios that avoid the detrimental effect of these multipolar errors in the FD. The simplest approach consists in modifying the optics but other solutions are studied as the introduction of new higher order magnets or the replacement of the FD with SC technology. The practical aspects of such an upgrade are the tuning performance and the compatibility with existing devices and instrumentation. These are fully addressed in the paper. |
||
WEPE041 | A Superconducting Magnet Upgrade of the ATF2 Final Focus | 3440 |
|
||
The KEK ATF2 facility, with a well instrumented beam line and Final Focus (FF), is a proving ground for linear collider (LC) technology to demonstrate the extreme beam demagnification and spot stability needed for a LC FF*. ATF2 uses water cooled magnets but the baseline ILC calls for a superconducting FF**. Thus we plan to replace some ATF2 FF magnets with superconducting ones made via direct wind construction as planned for the ILC. With no cryogenic supply at ATF2, we look to cool magnets and current leads with a few cryocoolers. ATF2 FF coil winding is underway at BNL and production warm magnetic measurements indicate good field quality. Having FF magnets with larger aperture and better field quality than present FF might allow reducing the beta function at the FF for study of focusing regimes relevant to CLIC. Our ATF2 magnet cryostat will have laser view ports for cold mass movement measurement and FF support and stabilization requirements under study. We plan to make stability measurements at BNL and KEK to relate ATF2 FF magnet performance to that of a full length ILC R&D prototype at BNL. We want to be able to predict LC FF performance with confidence. * ATF2 proposal, volumes 1 and 2 at http://lcdev.kek.jp/ILC-AsiaWG/WG4notes/atf2/proposal/index.html |