Paper | Title | Page |
---|---|---|
TUPE030 | High Power Terahertz FEL at ISIR, Osaka University | 2209 |
|
||
We have been developing a Terahertz free electron laser (FEL) based on the 40 MeV, 1.3 GHz L-band electron linac at the Institute of Scientific and Industrial Research (ISIR), Osaka University. After the FEL lasing at the wavelength of 70 um (4.3 THz)*, next targets of the FEL development are to extend the available laser wavelength, to increase the FEL power, and to evaluate characteristics of FEL. Since the lowest energy of the linac was restricted by a fixed-ratio power divider between the acceleration tube and the buncher, we have prepared the new one with a different ratio to extend the wavelength longer side. As a result, the wavelength region is able to be extended to 25 - 147 um (12.5 - 2 THz). The maximum output energy of the FEL macropulse so far obtained is 3.6 mJ at 66 um. The peak macropulse power available to user experiments is estimated to be 1 kW or less, given that the pulse duration is 3 us. Three users groups have begun experiments using the FEL. We will report these recent activities on the Terahertz FEL. * G. Isoyama, R. Kato, S. Kashiwagi, T. Igo, Y. Morio, Infrared Physics & Technology 51 (2008) 371-374. |
||
TUPEC009 | Development of a Photocathode RF Gun for the L-band Linac at ISIR, Osaka University | 1728 |
|
||
We conduct research on Free Electron Laser (FEL) in the infrared region and pulse radiolysis for radiation chemistry using the 40 MeV, 1.3 GHz L-band linac of Osaka University. At present, the L-band linac is equipped with a thermionic electron gun. It can accelerate a high-intensity single-bunch beam with charge up to 91 nC but the normalized emittance is large. In order to advance the research, we have begun development of a photocathode RF gun for the L-band electron linac in collaboration with KEK and Hiroshima University. We start the basic design of the RF gun cavity for the L-band linac at ISIR, Osaka University, based on the 1.5 cells, which is a normal conducting photocathode RF gun. A material of the cathode should be Cs2Te, which has the high quantum efficiency of a few percents, to produce a beam with high charge up to 30 nC/bunch. We improve the cooling system of the cavity for high duty operation to suppress the thermal deformation due to the heat load of input rf power. The simulation study has been also performed for the L-band linac at ISIR with a high charge electron beam. In this conference, we describe the details of the L-band photocathode RF gun development. |
||
WEPD056 | Performance of the L-Band Electron Linac for Advanced Beam Sciences at Osaka University | 3221 |
|
||
The 40 MeV L-band electron linac at the Institute of Scientific and Industrial Research, Osaka University is extensively used for various applications on advanced beam sciences including radiation chemistry by means of pulse radiolysis and development of the free electron laser in the THz region. It was constructed in 1975-78 and has been remodeled sometimes for improving its performance. The most recent one was made in 2002-2004 for higher operational stability and reproducibility, resulting in significant advances in the studies. We will report the present status of the linac and results of its performance evaluation. |