A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Tejima, M.

Paper Title Page
MOPE011 Shot-by-shot Beam Position Monitor System for Beam Transport Line from RCS to MR in J-PARC 978
 
  • M. Tejima, D.A. Arakawa, Y. Hashimoto
    KEK, Ibaraki
  • K. Hanamura
    MELCO SC, Tsukuba
  • N. Hayashi
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • K. Satou, T. Toyama, N. Yamamoto
    J-PARC, KEK & JAEA, Ibaraki-ken
 
 

To maintain the beam orbit of beam transport line from RCS to MR in J-PARC (3-50BT), 14 beam position monitors (BPMs) were installed. Their signals gathered in the local control building (D01) have been measured by using 14 digitizing oscilloscopes. The data acquisition system have a performance of shot-by-shot measurement.

 
MOPE020 Beam Based Alignment of the Beam Position Monitor at J-PARC RCS 1005
 
  • N. Hayashi, H. Harada, H. Hotchi
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • M. Tejima
    KEK, Ibaraki
  • T. Toyama
    J-PARC, KEK & JAEA, Ibaraki-ken
 
 

The J-PARC RCS is an M-Watt class rapid cycling synchrotron and it has delivered an intensive beam to the neutron target and the MR. In order to overcome large space charge effect, its physical aperture is designed to be more than 250mm in diameter. Even though its chamber size is very large, the BPM system gives precise data to determine beam optics parameters of the ring. For this purpose, only relative positions and resolutions are important. However, for much higher intensity, the absolute beam position and accurate COD correction are indispensable. We have carefully installed the BPM and measured the position with respect to the quadrupole magnet (QM) nearby. But it is also necessary to estimate its absolute position by using beam. If each QM could be controlled independently, the simple beam based alignment technique can be utilized, but it is not the case for RCS. There are seven families of QM, and only each family can be controlled at one time. We developed a new technique by expanding the simple method for the case of multiple QM focusing changed simultaneously, and applied to the J-PARC RCS. The paper describes this method and discussed about experimental results.

 
TUPEB012 Optics Measurement at the Interaction Point using Nearby Position Monitors in KEKB 1539
 
  • K. Ohmi, T. Ieiri, Y. Ohnishi, Y. Seimiya, M. Tejima, M. Tobiyama, D.M. Zhou
    KEK, Ibaraki
 
 

Optics parameters at the interaction point, beta, x-y coupling, dispersion and their chromatic aberrations, seriously affect the beam-beam performance as is shown in experiments and simulations. The control of the optics parameters is essential to maintain the high luminosity in KEKB. They drift day by day, or before and after the beam abort. They were often monitored at intervals of the operation with taking the study time. They are recently measured during the physics run using a pilot bunch without collision. We show the measured the optics parameters and their variations and discuss the relation to the luminosity.

 
WEPEB007 The Data Acquisition System of Beam Position Monitors in J-PARC Main Ring 2698
 
  • S. Hatakeyama, N. Hayashi
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • D.A. Arakawa, Y. Hashimoto, S. Hiramatsu, J.-I. Odagiri, M. Tejima, M. Tobiyama, T. Toyama, N. Yamamoto
    KEK, Ibaraki
  • K. Hanamura
    MELCO SC, Tsukuba
  • K. Satou
    J-PARC, KEK & JAEA, Ibaraki-ken
 
 

The Data Acquisition System of Beam Position Monitors(BPMs) in J-PARC Main Ring are consist of 186 Linux-based Data Processing Cirquits(BPMCs) and 12 EPICS IOCs. They are important tool to see the COD and turn-by-turn beam positions. This report describes the process of the data reconstruction which include how the various calibration constants are applied.

 
WEPEB036 Bunch by Bunch Feedback Systems for J-PARC MR 2767
 
  • M. Tobiyama, Y.H. Chin, Y. Kurimoto, T. Obina, M. Tejima, T. Toyama
    KEK, Ibaraki
  • Y. Shobuda
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
 
 

Transverse bunch by bunch feedback systems for J-PARC MR accelerator has been designed and tested. Bunch positions are detected by Log-ratio position detection systems with center frequency of 12 MHz. The digital filter which consists of two LLRF4 boards samples the position signal with 64 times of RF frequency. Up to four sets of 16 tap FIR filter with one-turn delay and digital shift gain can be used. Preliminary results of beam test of the system are also shown.

 
MOPE012 Performance of the Main Ring BPM during the Beam Commissioning at J-PARC 981
 
  • T. Toyama, D.A. Arakawa, S. Hiramatsu, S. Igarashi, S. Lee, H. Matsumoto, J.-I. Odagiri, M. Okada, M. Tejima, M. Tobiyama
    KEK, Ibaraki
  • K. Hanamura, S. Hatakeyama
    MELCO SC, Tsukuba
  • Y. Hashimoto, K. Satou, J. Takano
    J-PARC, KEK & JAEA, Ibaraki-ken
  • N. Hayashi
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
 
 

Experiences of operating BPM's during beam commissioning at the J-PARC MR are reported. The subjects are: (1) bug report, statistics and especially the effect of a beam duct step, (2) position resolution estimation (<30 micrometers with 1 sec averaging), (3) beam based alignment.

 
WEOAMH02 Recent Progress of KEKB 2372
 
  • Y. Funakoshi, T. Abe, K. Akai, Y. Cai, K. Ebihara, K. Egawa, A. Enomoto, J.W. Flanagan, H. Fukuma, K. Furukawa, T. Furuya, J. Haba, T. Ieiri, N. Iida, H. Ikeda, T. Ishibashi, M. Iwasaki, T. Kageyama, S. Kamada, T. Kamitani, S. Kato, M. Kikuchi, E. Kikutani, H. Koiso, M. Masuzawa, T. Mimashi, T. Miura, A. Morita, T.T. Nakamura, K. Nakanishi, M. Nishiwaki, Y. Ogawa, K. Ohmi, Y. Ohnishi, N. Ohuchi, K. Oide, T. Oki, M. Ono, M. Satoh, Y. Seimiya, K. Shibata, M. Suetake, Y. Suetsugu, T. Sugimura, Y. Susaki, T. Suwada, M. Tawada, M. Tejima, M. Tobiyama, N. Tokuda, S. Uehara, S. Uno, Y. Yamamoto, Y. Yano, K. Yokoyama, M. Yoshida, S.I. Yoshimoto, D.M. Zhou, Z.G. Zong
    KEK, Ibaraki
 
 

KEKB is an e-/e+ collider for the study of B physics and is also used for machine studies for future machines. The peak luminosity of KEKB, which is the world-highest value, has been still increasing. This report summarizes recent progress at KEKB.

 

slides icon

Slides