Paper | Title | Page |
---|---|---|
THPEC088 | Simulation based optimization of a collimator system at the PSI proton accelerator facilities | 4260 |
|
||
A simulation based optimization of a collimator system at the 590 MeV PSI proton accelerator is presented, for the ongoing beam power upgrade from the current 1.2 MW [2 mA] towards 1.8 MW [3 mA]. The collimators are located downstream of the 4 cm thick graphite meson production target. These are designed to shape the optimal beam profile for low-loss beam transport to the neutron spallation source SINQ. The optimized collimators are predicted to withstand the beam intensity up to 3 mA, without sacrificing intended functionalities. The collimator system is under the heavy thermal load generated by a proton beam power deposition approximately of 240 kW at 3 mA, and it needs an active water cooling system. Advanced multiphysics simulations are performed for a set of geometric and material parameters, for the thermomechanical optimization of the collimator system. In particular, a FORTRAN subroutine is integrated into CFD-ACE+, for calculating local beam stopping power in the collimator system. Selected results are then compared with those of full MCNPX simulations. |