A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Tecker, F.

Paper Title Page
TUPEA043 Phase Modulator Programming to Get Flat Pulses with Desired Length and Power from the CTF3 Pulse Compressors 1425
 
  • H. Shaker
    IPM, Tehran
  • R. Corsini, H. Shaker, P.K. Skowronski, I. Syratchev, F. Tecker
    CERN, Geneva
 
 

The pulse compressor is located after the klystron to increase the power peak by storing the energy at the beginning and releasing it near the end of klystron output pulse. In the CTF3 [1] pulse compressors a doubling of the peak power is achieved according to our needs and the machine parameters. The magnitude of peak power, pulse length and flatness can be controlled by using a phase modulator for the input signal of klystrons. A C++ code is written to simulate the pulse compressor behaviour according to the klystron output pulse power. By manually changing the related parameters in the code for the best match, the quality factor and the filling time of pulse compressor cavities can be determined. This code also calculates and sends the suitable phase to the phase modulator according to the klystron output pulse power and the desired pulse length and peak power.

 
WEPEB071 The CLIC Machine Protection 2860
 
  • M. Jonker, E.B. Holzer, S. Mallows, D. Manglunki, G. Morpurgo, Th. Otto, M. Sapinski, F. Tecker, J.A. Uythoven
    CERN, Geneva
 
 

The proposed Compact Linear Collider (CLIC) is based on a two-beam acceleration scheme. The energy of high intensity, low energy drive beams is extracted and transferred to low intensity, high energy main beams. Direct ionization loss by the beam particles is the principal damage mechanism. The total charge gives a single drive beam-train a damage potential that is two orders of magnitude above the level causing structural damage in copper. For the main beam, it is the extreme charge density due to the microscopic beam size that gives it a damage potential of four orders of magnitude above the safe level. The machine protection system has to cope with a wide variety of failures, from real time failures (RF breakdowns, kickers misfiring), to slow equipment failures, to beam instabilities (caused by e.g. temperature drifts, slow ground motions). This paper discusses the baseline for the CLIC machine protection system which is based on passive, active and permit based protection. As the permit based protection depends on the measured performance of the previous pulse, the bootstrap procedure with safe beams and stepwise increase in beam intensities, is also discussed.

 
MOPE058 Measuring the Bunch Frequency Multiplication at CTF3 1107
 
  • A.E. Dabrowski, S. Bettoni, E. Bravin, R. Corsini, S. Döbert, T. Lefèvre, A. Rabiller, P.K. Skowronski, L. Søby, F. Tecker
    CERN, Geneva
  • D. Egger
    EPFL, Lausanne
  • A. Ferrari
    Uppsala University, Uppsala
  • C.P. Welsch
    The University of Liverpool, Liverpool
 
 

The CTF3 facility is being built and commissioned by an international collaboration in order to test the feasibility of the proposed CLIC drive beam generation scheme. Central to this scheme is the use of RF deflectors to inject bunches into a Delay Loop and a Combiner Ring, in order to transform the initial bunch spacing of 1.5 GHz from the linac to a final bunch spacing of 12 GHz. The optimization procedure relies on several steps. The active length of each ring is carefully adjusted to within a few millimeters accuracy using a two‐period undulator. The transverse optics of the machine must be set-up in a way so as to ensure the beam isochronicity. Diagnostics based on optical streak cameras and RF power measurements have been designed to measure the longitudinal behaviour of the beam during the combination. This paper presents their performance and highlights recent measurements.

 
WEPE027 Progress towards the CLIC Feasibility Demonstration in CTF3 3410
 
  • P.K. Skowronski, S. Bettoni, R. Corsini, A.E. Dabrowski, S. Döbert, A. Dubrovskiy, F. Tecker
    CERN, Geneva
  • C. Biscari
    INFN/LNF, Frascati (Roma)
  • W. Farabolini
    CEA, Gif-sur-Yvette
  • R.J.M.Y. Ruber
    Uppsala University, Uppsala
 
 

The objective of the CLIC Test Facility CTF3 is to demonstrate the key feasibility issues of the CLIC two-beam technology: the efficient generation of a very high current drive beam and its stable deceleration in 12 GHz resonant structures, to produce high-power RF pulses and accelerate the main beam with an accelerating gradient of 100 MV/m. The construction and commissioning of CTF3 has taken place in stages from 2003. Many milestones had already been reached, including the first demonstration at the end of 2009 of a factor 2 x 4 re-combination of the initial drive beam pulse, thus reaching a beam current of 25 A. In this paper we summarise the commissioning highlights and the issues already validated at the earlier stages. We then show and discuss the latest results obtained, in view of the completion of the CLIC feasibility demonstration due for the end of 2010.

 
THPEA043 RF Pulse Compression Stabilization at the CTF3 CLIC Test Facility 3774
 
  • A. Dubrovskiy, F. Tecker
    CERN, Geneva
 
 

In the CTF3 accelerator, the RF produced by each of ten 3 GHz klystrons goes through waveguides, RF pulse compressors and splitters. The RF phase and power transformation of these devices depend on their temperature. The quantitative effect of the room temperature variation on the RF was measured. It is the major source of undesired changes during the CTF3 operation. An RF phase-loop and a compressor temperature stabilization are developed to suppress the phase fluctuation and the power profile change due to the temperature variation. The implementation is transparent for operators it does not limit anyhow the flexibility of RF manipulations. Expected and measured suppression characteristics will be given. As well RF measurement dependence on the temperature will be mentioned.