A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Tanaka, H.

Paper Title Page
MOPEC052 KEK Digital Accelerator for Material and Biological Sciences 576
 
  • K. Takayama, T. Adachi, T. Arai, Y. Arakida, M. Hasimoto, T. Iwashita, E. Kadokura, M. Kawai, T. Kawakubo, K. Koyama, T. Kubo, T. Kubo, H. Nakanishi, K. Okamura, H. Someya, A. Takagi, M. Wake
    KEK, Ibaraki
  • T. Kikuchi, T. Yoshii
    Nagaoka University of Technology, Nagaoka, Niigata
  • K.W. Leo
    Sokendai, Ibaraki
  • K. Mochiki, T. Sano
    Tokyo City University, Tokyo
  • M. Okamura
    RBRC, Upton, Long Island, New York
  • K. Okazaki
    Nippon Advanced Technology Co. Ltd., Ibaraki-prefecture
  • H. Tanaka
    Iwate university, Morioka, Iwate
 
 

A novel circular accelerator capable of accelerating any ions from an extremely low energy to relativistic energy is discussed. A digital accelerator (DA)* is based on the induction synchrotron concept, which had been demonstrated in 2006. All ions are captured and accelerated with pulse voltages generated by induction acceleration cell (IAC). The IAC is energized by the switching power supply, in which power solid-state conductors are employed as switching elements and their tuning on/off is maneuvered by gate signals digitally manipulated from the circulating signal of an ion beam. Acceleration synchronized with the revolution of the ion beam is always guaranteed. The concept is realized by renovating the KEK 500 MeV booster into the DA, introducing a laser ablation ion source. Ion energy of 85-140 MeV/au and intensity of 10+9 - 10+10 /sec are estimated and these ions will be delivered without any large-scale injector. Companion papers** will discuss more details of instruments of DA. Applications for innovative material sciences and life sciences will be briefly introduced as well as the outline of DA.


*K. Takayam, J. of Appl. Phys. 101 (2007) 063304.
**K.Takayama "Ion source and LEBT", T.Adachi "Injection and extraction system", T.Iwashita "Induction acceleration system" in this conference.

 
MOPE004 Development and Construction Status of the Beam Diagnostic System for XFEL/SPring-8 957
 
  • S. Matsubara, A. Higashiya, H. Maesaka, T. Ohshima, Y. Otake, T. Shintake, H. Tanaka, K. Togawa, M. Yabashi
    RIKEN/SPring-8, Hyogo
  • H. Ego, S. Inoue, K. Tamasaku, T. Togashi, H. Tomizawa, K. Yanagida
    JASRI/SPring-8, Hyogo-ken
 
 

We report the design, performance, and installation of the beam diagnostic system of XFEL/SPring-8. The electron beam bunches of an XFEL accelerator are compressed from 1 ns to 30 fs by bunch compressors without emittance growth and peak-current fluctuation which directly cause SASE fluctuation. To maintain the stable bunch compression process, the accelerator requires rf caivty beam position monitors (BPM) with 100 nm resolution, OTR screen monitors (SCM) with a few micro-meter resolution, fast beam current monitors (CT) and temporal structure measurement systems with resolution under picosecond. The performance of the developed monitor instruments, such as the BPM, the SCM, and the CT, was tested at the SCSS test accelerator and satisfied with the requirements. To measure the temporal structure of the electron bunch, three type measurement systems, which are a streak camera, an EO sampling measurement, and a transverse deflecting cavity with a resolution of few-tens femtosecond, are being prepared. The streak camera and EO sampling shows the resolution of sub-picosecond. The installation of these beam diagnostic systems is going on smoothly.