A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Takasaki, M.

Paper Title Page
MOPE024 Development of Radiation Registant Optics System for High Intensity Proton Beamline at the J-PARC 1017
 
  • A. Toyoda, A. Agari, E. Hirose, M. Ieiri, Y. Katoh, A. Kiyomichi, M. Minakawa, T.M. Mitsuhashi, R. Muto, M. Naruki, Y. Sato, S. Sawada, Y. Suzuki, H. Takahashi, M. Takasaki, K.H. Tanaka, H. Watanabe, Y. Yamanoi
    KEK, Tsukuba
  • H. Noumi
    RCNP, Osaka
 
 

Optical beam measurement such as OTR(Optical Transition Radiation), ODR(Optical Diffraction Radiation), gas Cerenkov, and so on is a powerful tool to observe a two-dimensional information of high intensity beam profile, so that this method is widely used at various electron and hadron accelerators. However, high radiation field to damage an optical system gradually becomes a major issue with increasing the beam intensity to explore new physics. Our present effort is devoted to develop a high efficient optical system to resist such high radiation field. We newly designed an optical system composed of two spherical mirrors which do not have any lenses vulnerable to radiation. Detailed optics design and a result of optical performance test will be presented. Also we will report a result of a beam test experiment of this optics system combined with an OTR screen performed at high intensity proton extraction beamline of the J-PARC.

 
THPEC045 Electrostatic Separator and K1.8 Secondary Beamline at the J-PARC Hadron-Hall 4161
 
  • M. Ieiri, A. Agari, E. Hirose, Y. Katoh, M. Minakawa, R. Muto, M. Naruki, Y. Sato, S. Sawada, Y. Suzuki, H. Takahashi, T. Takahashi, M. Takasaki, K.H. Tanaka, A. Toyoda, H. Watanabe, Y. Yamanoi
    KEK, Tsukuba
  • H. Noumi
    RCNP, Osaka
 
 

In the hadron experimental hall at the 50-GeV Proton Synchrotron (PS) of J-PARC, the secondary beam line K1.8 with double stage separator is expected to provide 1-2 GeV/c kaon beams with less contamination of pions mainly for hadron and nuclear physics experiments with strangeness. An electrostatic (ES) separator is one of key elements of this secondary beam line. The ES separator will generate a 75kV/cm electrostatic field between parallel electrodes of 10cm gap and 6m in length along the beam direction. It is designed so as to be radiation-proof and to lower spark rate at the high intensity proton accelerator facility. The K1.8 line has two 6m ES separators with the intermediate focal point upstream of separators to reduce the pion backgrounds from the production target. The K-/π- ratio of the line is expected to have a larger value than 1 at the experimental target. Beam commissioning of the K1.8 has just started. We will report separator performance, optics design of the K1.8 beam line and the first result of the beam commissioning.

 
TUPEC029 Comparison between Hexaboride Materials for Thermionic Cathode RF Gun 1782
 
  • M. A. Bakr, Y.W. Choi, T. Kii, R. Kinjo, K. Masuda, H. Ohgaki, T. Sonobe, M. Takasaki, S. Ueda, K. Yoshida
    Kyoto IAE, Kyoto
  • H. Zen
    UVSOR, Okazaki
 
 

RF gun has been chosen as injector for Kyoto University free electron laser because it can potentially produce an electron beam with high energy, small emittance, moreover inexpensive and compact configuration in comparison with other injectors. As for the RF gun cathode, thermionic cathode is simpler, easier to treat and reliable than photocathode. On the other hand, backbombardment electrons make cathode surface temperature and current density increase within the macropulse, as a result, beam energy and macropulse duration decrease, which means, it is difficult to generate stable FEL. The heating property of cathode not only depends on physical properties of the cathode material such as work function, but also backbombardment electrons energy. We investigated the heating property of six hexaboride materials against the backbombarding electrons by numerical calculation of the range and stopping power. In this investigation, the emission property of the cathode was also taken into account, since high electron emission is required for generation of high brightness electron beam. The results will be discussed.

 
TUPE028 Status of the MIR FEL Facility in Kyoto University 2203
 
  • T. Kii, M. A. Bakr, Y.W. Choi, R. Kinjo, K. Masuda, H. Ohgaki, T. Sonobe, M. Takasaki, S. Ueda, K. Yoshida
    Kyoto IAE, Kyoto
 
 

A mid-infrared free electron laser (MIR FEL) facility has been constructed for the basic research on energy materials in the Institute of Advanced Energy, Kyoto University. The MIR FEL saturation at 13.2 μm was observed in May 2008, and the construction of the FEL delivery system from accelerator room to the optical diagnostic station and experimental stations has been finished in Dec. 2009. In the conference, optical properties of the MIR FEL and research program using MIR-FEL will be introduced.

 
WEPD029 End Field Termination for Bulk HTSC Staggered Array Undulator 3156
 
  • R. Kinjo, M. A. Bakr, Y.W. Choi, T. Kii, K. Masuda, K. Nagasaki, H. Ohgaki, T. Sonobe, M. Takasaki, K. Yoshida
    Kyoto IAE, Kyoto
 
 

Aiming at realizing a short period undulator with strong magnetic field, we have proposed a Bulk HTSC (high temperature superconductor) Staggered Array Undulator which consists of bulk high temperature superconductor magnets with a staggered array configuration. The experiment with the prototype undulator at 77 K shows this configuration can be applicable to real undulator. We also estimated the magnetic performance of real device by calculations with a loop current model based on Bean model of superconductor. Although end field termination is required for practical use, traditional methods are not applicable for the bulk HTSCs. We found that the end field termination can be realized by controlling the shape and size of bulk HTSCs at the end section by numerical calculation using the loop current model. In the conference, the calculation and experimental result of end field termination will be presented.