A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Stupakov, G.V.

Paper Title Page
MOPD017 Impedance Considerations for the Design of the Vacuum System of the CERN PS2 Proton Synchrotron 708
 
  • K.L.F. Bane, G.V. Stupakov, U. Wienands
    SLAC, Menlo Park, California
  • M. Benedikt, A. Grudiev, E. Mahner
    CERN, Geneva
 
 

In order for the LHC to reach an ultimate luminosity goal of 1035, CERN is considering upgrade options for the LHC injector chain, including a new 50 GeV synchrotron of about 1.3 km length for protons and heavy ions, to be called the PS2. In this ring the proton energy is ramped from 4 GeV in 1.2 s, and the design (proton) current is 2.7 A. The present baseline of the vacuum system considers elliptical stainless steel chambers bakeable up to 300°C, various coatings to mitigate electron cloud are under study. For a bare stainless steel or Inconel chamber, the resistive wall wake alone will lead to multi-bunch instability, whereas for transverse mode coupling (TMCI), the threshold is above the design beam current, though this instability may become an issue once other impedance contributions are taken into account. A copper layer of varying thickness is shown to raise the TMCI threshold but to have relatively little effect on the multi-bunch resistive-wall growth rate unless the coating is very thick. We are also studying the effect of the copper coating on the penetration of the guide field during the energy ramp, which sets an upper limit on the allowable thickness.

 
TUPEB018 CSR in the SuperKEKB Damping Ring 1554
 
  • D.M. Zhou, T. Abe, H. Ikeda, M. Kikuchi, K. Ohmi, K. Oide, K. Shibata, M. Tobiyama
    KEK, Ibaraki
  • G.V. Stupakov
    SLAC, Menlo Park, California
 
 

Coherent synchrotron radiation (CSR) is generated when a bunched beam traverses a dipole magnet or a wiggler/undulator. It can degrade the beam quality in both storage rings and linacs through enhancing the beam energy spread and lengthening the bunch length, even cause single-bunch microwave instabilities. Using several methods, CSR impedances in the positron damping ring (DR) of the SuperKEKB which is under design were calculated. From the impedances due to CSR, resistive wall and various vacuum components, quasi-Green function wake potentials were constructed and used in simulations of Particle-In-Cell (PIC) tracking. We present the CSR related results in this paper.

 
TUPEC078 A Two-dimensional FEM Code for Impedance Calculation in High Frequency Domain 1895
 
  • L. Wang, L. Lee, G.V. Stupakov
    SLAC, Menlo Park, California
 
 

A new method, using the parabolic equation (PE), for the calculation of both high-frequency and small-angle taper (or collimator) impedances is developed in [1]. One of the most important advantages of the PE approach is that it eliminates the spatial scale of the small wavelength from the problem. As a result, the numerical solution of the PE requires coarser spatial meshes. We developed a new code based on Finite Element Method (FEM) which can handle arbitrary profile of a transition. As a first step, we completed and benchmarked a two-dimensional code. One of the important advantages of the code is its fast execution time.

 
TUPD078 Comparison of Simulation Codes for Microwave Instability in Bunched Beams 2096
 
  • K.L.F. Bane, Y. Cai, G.V. Stupakov
    SLAC, Menlo Park, California
 
 

In accelerator design, there is often a need to evaluate the threshold to the (longitudinal) microwave instability for a bunched beam in a storage ring. Several computational tools are available that allow us, once given a wakefield, to numerically find the threshold current and to simulate the development of the instability. In this work, we present the results of computer simulations with codes recently developed at the SLAC National Accelerator Laboratory. Our simulations include the cases of the resonator broadband impedance, the resistive wall impedance and the coherent synchrotron radiation impedance. We compare the accuracy of the threshold prediction and discuss the capabilities and limitations of the codes.

 
TUPD079 PEP-X Impedance and Instability Calculations 2099
 
  • K.L.F. Bane, L. Lee, C.-K. Ng, G.V. Stupakov, L. Wang, L. Xiao
    SLAC, Menlo Park, California
 
 

PEP-X, a next generation, ring-based light source is designed to run with beams of high current and low emittance. Important parameters are: energy 4.5 GeV, circumference 2.2 km, beam current 1.5 A, and horizontal and vertical emittances, 150 pm by 8 pm. In such a machine it is important that impedance driven instabilities not degrade the beam quality. In this report we study the strength of the impedance and its effects in PEP-X. For the present, lacking a detailed knowledge of the vacuum chamber shape, we create a straw man design comprising important vacuum chamber objects to be found in the ring, for which we then compute the wake functions. From the wake functions we generate an impedance budget and a pseudo-Green function wake representing the entire ring, which we, in turn, use for performing instability calculations. In this report we consider in PEP-X the microwave, transverse mode-coupling, multi-bunch transverse, and beam-ion instabilities.

 
TUPD080 Study of High-frequency Impedance of Small-angle Tapers and Collimators 2102
 
  • G.V. Stupakov
    SLAC, Menlo Park, California
  • B. Podobedov
    BNL, Upton, Long Island, New York
 
 

Collimators and other similar accelerator structures usually include small-angle tapering to lower the wakefields generated by the beam. While the low-frequency impedance is well described by Yokoya's formula (for axisymmetric geometry), much less is known about the behavior of the impedance in the high frequency limit. In this paper we develop an analytical approach to the high-frequency regime for round collimators and tapers. Our analytical results are compared with computer simulations using the code ECHO.

 
WEXRA02 Echo-Enabled Harmonic Generation 2416
 
  • G.V. Stupakov
    SLAC, Menlo Park, California
 
 

Recently a new concept*, ** for FEL seeding has been proposed that should allow generation of much higher harmonics of the laser modulation than previously envisioned. The Echo-enabled Harmonic Generation (EEHG) FEL uses two modulators in combination with two dispersion sections to generate in the beam a high-harmonic density modulation starting with a relatively small initial energy modulation of the beam. The EEHG seeding technique makes feasible a one stage seeding of soft x-ray FELs. An experimental installation is now being constructed at SLAC to demonstrate the EEHG in the NLCTA facility.


*G. Stupakov, PRL, 102, 074801 (2009).
**D. Xiang and G. Stupakov, PRSTAB, 030702 (2009).

 

slides icon

Slides

 
TUPE069 A Proof-of-principle Echo-enabled Harmonic Generation FEL Experiment at SLAC 2293
 
  • M.P. Dunning, E.R. Colby, Y.T. Ding, J.T. Frederico, A. Gilevich, C. Hast, R.K. Jobe, D.J. McCormick, J. Nelson, T.O. Raubenheimer, K. Soong, G.V. Stupakov, Z.M. Szalata, D.R. Walz, S.P. Weathersby, M. Woodley, D. Xiang
    SLAC, Menlo Park, California
  • J.N. Corlett, G. Penn, S. Prestemon, J. Qiang, D. Schlueter, M. Venturini, W. Wan
    LBNL, Berkeley, California
  • P.L. Pernet
    EPFL, Lausanne
 
 

In this paper we describe the technical design of an on-going proof-of-principle echo-enabled harmonic generation (EEHG) FEL experiment in the Next Linear Collider Test Accelerator (NLCTA) at SLAC. The experiment was designed through late 2009 and built and installed between October 2009 and January 2010. We present the design considerations, the technical realization and the expected performances of the EEHG experiment.

 
TUPE072 Preliminary results of the echo-seeding experiment ECHO-7 at SLAC 2299
 
  • D. Xiang, E.R. Colby, Y.T. Ding, M.P. Dunning, J.T. Frederico, A. Gilevich, C. Hast, R.K. Jobe, D.J. McCormick, J. Nelson, T.O. Raubenheimer, K. Soong, G.V. Stupakov, Z.M. Szalata, D.R. Walz, S.P. Weathersby, M. Woodley
    SLAC, Menlo Park, California
  • J.N. Corlett, G. Penn, S. Prestemon, J. Qiang, D. Schlueter, M. Venturini, W. Wan
    LBNL, Berkeley, California
  • P.L. Pernet
    EPFL, Lausanne
 
 

ECHO-7 is a proof-of-principle echo-enabled harmonic generation* FEL experiment in the Next Linear Collider Test Accelerator (NLCTA) at SLAC. The experiment aims to generate coherent radiation at 318 nm and 227 nm, which is the 5th and 7th harmonic of the infrared seed laser. In this paper we present the preliminary results from the commissioning run of the completed experimental setup which started in April 2010.


* G. Stupakov, PRL, 102, 074801 (2009); D. Xiang and G. Stupakov, PRST-AB, 12, 030702 (2009).

 
WEPEA074 A Baseline Design for PEP-X: an Ultra-low Emittance Storage Ring 2657
 
  • Y. Cai, K.L.F. Bane, K.J. Bertsche, A. Chao, R.O. Hettel, X. Huang, Z. Huang, C.-K. Ng, Y. Nosochkov, A. Novokhatski, T. Rabedeau, J.A. Safranek, G.V. Stupakov, L. Wang, M.-H. Wang, L. Xiao
    SLAC, Menlo Park, California
 
 

Over the past year, we have worked out a baseline design for PEP-X, as an ultra-low emittance storage ring that could reside in the existing 2.2-km PEP-II tunnel. The design features a hybrid lattice with double bend achromat cells in two arcs and theoretical minimum emittance cells in the remaining four arcs. Damping wigglers reduce the horizontal emittance to 86 pm-rad at zero current for a 4.5 GeV electron beam. At a design current of 1.5 A, the horizontal emittance increases, due to intra-beam scattering, to 164 pm-rad when the vertical emittance is maintained at a diffraction limited 8 pm-rad. The baseline design will produce photon beams achieving a brightness of 1022 (ph/s/mm2/mrad2/0.1% BW) at 10 keV in a 3.5-m conventional planar undulator. Our study shows that an optimized lattice has adequate dynamic aperture, while accommodating a conventional off-axis injection system. In this paper, we will present the study of the lattice properties, nonlinear dynamics, intra-beam scattering and Touschek lifetime, and collective instabilities. Finally, we discuss the possibility of partial lasing at soft X-ray wavelengths using a long undulator in a straight section.