A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Soda, K.

Paper Title Page
TUPD091 Generation of Ultra-Short Gamma-ray Pulses by Laser Compton Scattering in an Electron Storage Ring 2117
 
  • Y. Taira, M. Hosaka, K. Soda, Y. Takashima, N. Yamamoto
    Nagoya University, Nagoya
  • M. Adachi, M. Katoh, H. Zen
    UVSOR, Okazaki
  • T. Tanikawa
    Sokendai - Okazaki, Okazaki, Aichi
 
 

We are developing an ultra-short gamma ray pulse source based on laser Compton scattering technology at the 750 MeV electron storage ring UVSOR-II. Ultra-short gamma ray pulses can be generated by injecting femtosecond laser pulses into the electron beam circulating in an electron storage ring from the direction perpendicular to the orbital plane. The energy, intensity, and pulse width of the gamma rays have been estimated to be 6.6 MeV, 2.4× 106 photons s-1, and 150 fs, respectively, for the case of UVSOR-II with a commercially available femtosecond laser. These parameters can be tuned by changing the incident angle of the laser to the electron beam, electron energy, and the size of the laser. A preliminary head-on collision experiment was carried out. The measured spectral shape agreed well with simulation including the detector response calculated by the EGS5 code*, which implied the generation of gamma rays by laser Compton scattering and the validity of the estimation of the gamma ray intensity in the case of 90-degree collisions.


* H. Hirayama et al., SLAC-R-730, (2005).