A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Snuverink, J.

Paper Title Page
TUPEC059 Start-to-End Tracking Simulations of the Compact Linear Collider 1859
 
  • J. Resta-López, J. Dale
    JAI, Oxford
  • B. Dalena, D. Schulte, J. Snuverink, F. Stulle, R. Tomás
    CERN, Geneva
  • A. Latina
    Fermilab, Batavia
 
 

We present the current status of the beam tracking simulations of the Compact Linear Collider (CLIC) from the exit of the damping ring to the interaction point, including the ring to main linac (RTML) section, main linac, beam delivery system (BDS) and beam-beam interactions. This model introduces realistic alignment survey errors, dynamic imperfections and also the possibility to study collective effects in the main linac and the BDS. Special emphasis is put on low emittance transport and beam stabilization studies, applying beam based alignment methods and feedback systems. The aim is to perform realistic integrated simulations to obtain reliable luminosity predictions.

 
WEPEC054 Status of the CLIC RTML Studies 3013
 
  • F. Stulle, D. Schulte, J. Snuverink
    CERN, Geneva
  • A. Latina
    Fermilab, Batavia
  • S. Molloy
    Royal Holloway, University of London, Surrey
 
 

Over the last months the general layout of the CLIC main beam RTML has stabilized and most important lattices are existing. This allowed us to perform detailed studies of tolerances on magnetic stray fields and on magnet misalignment. Additionally, beam lines could be improved in terms of performance and flexibility. We discuss the overall layout as will be described in the CLIC conceptual design report, highlight the improvements which have been made and show results of tolerance studies.

 
WEPE023 Impact of Dynamic Magnetic Fields on the CLIC Main Beam 3398
 
  • J. Snuverink, W. Herr, C. Jach, J.B. Jeanneret, D. Schulte, F. Stulle
    CERN, Geneva
 
 

The Compact Linear Collider (CLIC) accelerator has strong precision requirements on the position of the beam. The beam position will be sensitive to external dynamic magnetic fields (stray fields) in the nanotesla regime. The impact of these fields on the CLIC main beam has been studied by performing simulations on the lattices and tolerances have been determined. Several mitigation techniques will be discussed.

 
WEPE028 CLIC BDS Tuning, Alignment and Feedbacks Integrated Simulations 3413
 
  • R. Tomás, B. Dalena, J. Pfingstner, D. Schulte, J. Snuverink
    CERN, Geneva
  • J.K. Jones
    Cockcroft Institute, Warrington, Cheshire
  • A. Latina
    Fermilab, Batavia
  • J. Resta-López
    JAI, Oxford
 
 

The CLIC BDS tuning, alignment and feedbacks studies have been typically performed independently and only over particular sections of the BDS. An effort is being put to integrate all these procedures to realistically evaluate the luminosity performance.