A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Skomorokhov, V.A.

Paper Title Page
MOPEA038 Gamma-Ray Source for Nuclear Resonance Fluorescence Based on Compton Storage Ring 154
 
  • P. Gladkikh, E.V. Bulyak, V.A. Skomorokhov
    NSC/KIPT, Kharkov
  • T. Omori, J. Urakawa
    KEK, Ibaraki
 
 

Nuclear resonance fluorescence (NRF) is the one of the most promising methods of the nuclear waste management and of the modern technologies of the nonproliferation of nuclear weapons. There are a few proposals of the usage of NRF *,**. Yet linac and energy recovery linac are suggested as the electron source for the Compton scattering (CS) of the laser photons. The storage ring is capable to produce sufficiently higher beam intensity and is more effective since the electrons interact with the laser pulse many times. The storage ring with the electron energy from 240 to 530 MeV is proposed for the CS of 1.16 eV laser photons in the report. Maximal energy of the scattered gamma rays lies within range from 1 MeV to 5 MeV. It allows detecting of practically any isotope in analyzed objects. The specificity of the proposed storage ring is usage of the crab-crossing of the electron and laser beams. Due to crab-crossing we expect to obtain the gamma beam intensity approximately 5*1013 gammas/s for laser flash energy 5 mJ stored in the optical cavity. Both electron beam and gamma beam parameters are studied analytically and by simulation of the CS in the designed ring lattice.


* J. Pruet et al. Detecting clandestine material with nuclear resonance fluorescence. J. Appl. Phys., 99, 123102-1-11 (2006).
** R. Hajima et al. J. Nucl. Sci. Tech., vol. 45, pp. 441-451, 2008.