Paper | Title | Page |
---|---|---|
THPEA072 | Model of He I/He II Phase Transition for the Superconducting Line Powering LHC Correctors | 3837 |
|
||
The array of corrector magnets in the LHC is powered by means of a superconducting line attached to the main magnets. The subcooling time of the line has to be minimized in order not to delay the operation of the collider. The corresponding cable-in-conduit problem is formulated in the framework of two-fluid model and the Gorter-Mellink law of heat transport in superfluid helium. A model of λ front propagation along the narrow channel containing superconductors and liquid helium is presented. The one-dimensional model* adopts plane wave equations to describe λ front propagation. This approach to normal-to-superfluid phase transition in liquid helium allows to calculate the time of subcooling and the temperature profile on either side of the travelling front in long channels containing superconducting bus-bars. The model has been verified by comparing the analytical solutions with the experimental results obtained in the LHC String 2 experiment. The process of the LHC Dispersion Suppressors subcooling has been optimized by using the presented model. Based on the results, a novel concept of copper heat exchanger for LHC DS operating in superfluid helium is introduced. * M. Sitko, B. Skoczeń, Modelling HeI-HeII phase transformation in long channels containing superconductors, Int. Journal of Heat and Mass Transfer, Vol. 52, Issues 1-2,pp. 9-16, 2009. |