A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Siemko, A.P.

Paper Title Page
MOPEB044 High-current Bus Splice Resistances and Implications for the Operating Energy of the LHC 373
 
  • M. Koratzinos, F.F. Bertinelli, Z. Charifoulline, K. Dahlerup-Petersen, R. Denz, C.E. Scheuerlein, R. Schmidt, A.P. Siemko, A.P. Verweij
    CERN, Geneva
  • R.H. Flora, H. Pfeffer, J. Strait
    Fermilab, Batavia
 
 

At each interconnection between LHC main magnets, a low-resistance solder joint must be made between superconducting cables to provide a continuous current path through the superconductor, and between the surrounding copper stabilizer to provide a current path in case the cable quenches. About 10,000 such joints exist in the LHC. An extensive campaign has been undertaken to characterize and map the resistances of both types of joints. All of the superconducting cable splices were measured using the enhanced protection system of the LHC superconducting circuits. No high-resistance superconductor splices were found above 3 nano-Ohms. Non-invasive measurements of the stabilizer joints were made at 300K in 5 of the 8 sectors, and at 80K in 3 sectors. More precise local measurements were made on suspect interconnects that were opened up, and poor joints were repaired. However, it is likely that additional imperfect stabilizer joints still exist in the LHC. A statistical analysis is used to place bounds on the remaining worst-case resistances. This sets limits on the maximum operating energy of the LHC, prior to a more extensive intervention.

 
MOPEB045 Commissioning of the LHC Magnet Powering System in 2009 376
 
  • M. Solfaroli Camillocci, G. Arduini, B. Bellesia, J. Coupard, K. Dahlerup-Petersen, M. Koratzinos, M. Pojer, R. Schmidt, A.P. Siemko, H. Thiesen, A. Vergara-Fernández, M. Zanetti, M. Zerlauth
    CERN, Geneva
 
 

On 19th September 2008 the Large Hadron Collider (LHC) experienced a serious incident, caused by a bad electrical joint, which stopped beam operation just a few days after its beginning. During the following 14 months the damage was repaired, additional protection systems were installed and the measures to avoid a similar incident were taken (i.e. new layer of the Magnet Quench Protection System [nQPS], more efficient He release valves). As a consequence, a large number of powering tests had to be repeated or carried out for the first time. The re-commissioning of the already existing systems as well as the commissioning of the new ones has been carefully studied, then performed taking into account the history of each of the eight LHC sectors (warm-up, left at floating temperature,'). Moreover, a campaign of measurements of the bus-bar splice resistances has been carried out with the nQPS in order to spot out non conformities, thus assessing the risk of the LHC operation for the initial energy level. This paper discusses how the guidelines for the LHC 2009 re-commissioning were defined, providing a general principle to be used for the future re-commissioning.

 
TUOCMH03 Initial Experience with the Machine Protection System for LHC 1277
 
  • R. Schmidt, R.W. Assmann, B. Dehning, M. FERRO-LUZZI, B. Goddard, M. Lamont, A.P. Siemko, J.A. Uythoven, J. Wenninger, M. Zerlauth
    CERN, Geneva
 
 

Nominal beam parameters at 7TeV/c will only be reached after some years of operation, with each proton beam having a stored energy of 360MJ. However, a small fraction of this energy is sufficient to damage accelerator equipment or experiments in case of uncontrolled beam loss. The correct functioning of the machine protection systems is vital during the different operational phases already for initial operation. When operating the complex magnet system, with and without beam, safe operation relies on the protection and interlock systems for the superconducting circuits. For safe injection and transfer of beam from SPS to LHC, transfer line parameters are monitored, beam absorbers must be in the correct position and the LHC must be ready to accept beam. At the end of a fill and in case of failures beams must be properly extracted onto the dump blocks, for some failures within less than few hundred microseconds. Safe operation requires many systems: beam dumping system, beam interlocks, beam instrumentation, equipment monitoring, collimators and absorbers, etc. We describe the commissioning of the LHC machine protection system and the experience during the initial operation.

 

slides icon

Slides

 
MOPD013 Upgrade of the Quench Protection Systems for the Superconducting Circuits of the LHC Machine at CERN: From Concept and Design to the First Operational Experience 696
 
  • F. Formenti, Z. Charifoulline, G.-J. Coelingh, K. Dahlerup-Petersen, R. Denz, A. Honma, E. Ravaioli, R. Schmidt, A.P. Siemko, J. Steckert
    CERN, Geneva
  • SF. Feher, R.H. Flora, H. Pfeffer
    Fermilab, Batavia
 
 

Two events, occurring in 2008 during commissioning of the LHC circuits, lead to fundamental changes to the scope of circuit protection. The discovery of aperture-symmetric quenches and the accidental rupture at 9kA of an interconnecting busbar resulted in an emergency program for development and implementation of new protection facilities. The new scheme comprises a distributed busbar supervision system with early warning capabilities based on high-precision splice resistance measurements and system interlocks for rapid de-excitation of the circuit in case of a sudden splice resistance increase. The developed symmetric quench detectors are digital systems with radiation-resistant FPGA logic controllers, having magnet heater firing capabilities. This program successfully allowed a safe re-powering of the collider. The concept of the new electronics boards and the powering modules will be described. More than 14'600 extra cables and 6'000 new detector and control cards were added to the existing QPS system. A first evaluation of the system performance as well as a number of interesting discoveries made during the commissioning will be presented.