A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Shiltsev, V.D.

Paper Title Page
TUOAMH03 Channeling and Volume Reflection Based Crystal Collimation of the Tevatron Circulating Beam Halo (T980) 1243
 
  • V.D. Shiltsev, G. Annala, R.A. Carrigan, A.I. Drozhdin, T.R. Johnson, A.M. Legan, N.V. Mokhov, R.E. Reilly, D.A. Still, R. Tesarek, J.R. Zagel
    Fermilab, Batavia
  • R.W. Assmann, V.P. Previtali, W. Scandale
    CERN, Geneva
  • Y.A. Chesnokov, I.A. Yazynin
    IHEP Protvino, Protvino, Moscow Region
  • V. Guidi
    INFN-Ferrara, Ferrara
  • Yu.M. Ivanov
    PNPI, Gatchina, Leningrad District
  • S. Peggs
    BNL, Upton, Long Island, New York
 
 

The T980 crystal collimation experiment is underway at the Tevatron to study various crystal types and parameters and evaluate if this technique would increase TeV beam-halo collimation efficiency at high-energy hadron colliders such as the Tevatron and the LHC. The setup has been substantially enhanced during the Summer 2009 shutdown by installing a new O-shaped crystal in the horizontal goniometer, adding a vertical goniometer with two alternating crystals (O-shaped and multi-strip) and additional beam diagnostics. First measurements with the new system are quite encouraging, with channeled and volume-reflected beams observed on the secondary collimators as predicted. Investigation of crystal collimation efficiencies with crystals in volume reflection and channeling modes are described in comparison with an amorphous primary collimator. Results on the system performance are presented for the end-of-store studies and for entire collider stores. Planning is underway for dedicated studies during a Tevatron post-collider physics running period.

 

slides icon

Slides

 
TUPEB076 Development of hollow electron beams for proton and ion collimation 1698
 
  • G. Stancari, A.I. Drozhdin, G.F. Kuznetsov, V.D. Shiltsev, D.A. Still, A. Valishev, L.G. Vorobiev
    Fermilab, Batavia
  • R.W. Assmann
    CERN, Geneva
  • A.A. Kabantsev
    UCSD, La Jolla, California
  • G. Stancari
    INFN-Ferrara, Ferrara
 
 

Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable material damage. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and built. Its performance and stability were measured at the Fermilab test stand. The gun will be installed in one of the existing Tevatron electron lenses for preliminary tests of the hollow-beam collimator concept, addressing critical issues such as alignment and instabilities of the overlapping proton and electron beams.

 
TUPD070 Progress with Tevatron Electron Lens Head-on Beam-Beam Compensation 2084
 
  • A. Valishev, G.F. Kuznetsov, V.D. Shiltsev, G. Stancari, X. Zhang
    Fermilab, Batavia
  • A.L. Romanov
    BINP SB RAS, Novosibirsk
 
 

Tevatron electron lenses have been successfully used to mitigate bunch-to-bunch differences caused by long-range beam-beam interactions. For this purpose the electron beam with uniform transverse density distribution was used. Another planned application of the electron lens is the suppression of tune spread due to head-on beam-beam collisions. For this purpose, the transverse distribution of e-beam must be matched to that of the antiproton beam. In 2009, the gaussian profile electron gun was installed in one of the Tevatron electron lenses. We report on the first experiments with non-linear beam-beam compensation. Discussed topics include measurement and control of the betatron tune spread, importance of the beam alignment and stability, and effect of the electron lens on the proton and antiproton beam lifetime.

 
WEPE065 The US Muon Accelerator Program 3491
 
  • A.D. Bross, S. Geer, V.D. Shiltsev
    Fermilab, Batavia
  • H.G. Kirk
    BNL, Upton, Long Island, New York
  • Y. Torun
    IIT, Chicago, Illinois
  • M.S. Zisman
    LBNL, Berkeley, California
 
 

An accelerator complex that can produce ultra-intense beams of muons presents many opportunities to explore new physics. A facility of this type is unique in that, in a relatively straightforward way, it can present a physics program that can be staged and thus move forward incrementally, addressing exciting new physics at each step. At the request of the US Department of Energy's Office of High Energy Physics, the Neutrino Factory and Muon Collider Collaboration and the Fermilab Muon Collider Task Force have recently submitted a proposal to create a Muon Accelerator Program that will have, as a primary goal, to deliver a Design Feasibility Study for an energy-frontier Muon Collider after a 7 year R&D program. This paper presents a description of a Muon Collider facility with a brief physics motivation, gives an overview of the proposal with respect to its organization and timeline and then discusses in some detail its major technical components.

 
THPE015 Simplified Approach to Evaluation of Beam-beam Tune Spread Compression by Electron Lens 4545
 
  • A.L. Romanov
    BINP SB RAS, Novosibirsk
  • V.D. Shiltsev, A. Valishev
    Fermilab, Batavia
 
 

One of the possible ways to increase luminosity of hadron colliders is the compensation of beam-beam tune-spread with an electron lens (EL). At the same time, EL as an additional nonlinear element in the lattice can increase strength of nonlinear resonances so that its overall effect on the beam lifetime will be negative. Time-consuming numerical simulations are often used to study the effects of the EL. In this report we present a simplified model, which uses analytical formulae derived for certain electron beam profiles. Based on these equations the idealized shapes of the compressed tune spread can be rapidly calculated. Obtained footprints were benchmarked against several reference numerical simulations for the Tevatron in order to evaluate the selected configurations. One of the tested criteria was the so-called "folding" of the compensated footprint, which occurs when particles with different betatron amplitudes have the same tune shift. Also studied were the effects of imperfections, including misalignment of the electron and proton beams, and mismatch of their shapes.