Paper | Title | Page |
---|---|---|
TUPE052 | The ALPHA-X Beam Line: towards a Compact FEL | 2263 |
|
||
Recent progress in developing laser-plasma accelerators is raising the possibility of a compact coherent radiation source that could be housed in a medium sized university department. Furthermore, since the duration of electron bunches from laser-plasma wakefield accelerators is determined by the relativistic plasma wavelength, radiation sources based on these accelerators can produce pulses with femtosecond durations. Beam properties from laser-plasma accelerators have been traditionally thought of as not being of sufficient quality to produce amplification. Our work shows that this is not the case. Here we present a study of the beam characteristics of a laser-plasma accelerator and the compact ALPHA-X (Advanced Laser Plasma High-energy Accelerators towards X-rays) FEL. We discuss the implementation of a focussing system consisting of a triplet of permanent magnet quadrupoles and a triplet of electromagnetic quadrupoles*. We will present a study of the influence of beam transport on FEL action in the undulator, paying particular attention to bunch dispersion in the undulator. This is an important step for developing a compact synchrotron source or a SASE free-electron laser. *The design of these devices has been carried out using the GPT code, which considers space charge effects and allows a realistic estimate of electron beam properties along the beam line. |
||
TUPE096 | Recent Developments on ALICE (Accelerators and Lasers In Combined Experiments) at Daresbury Laboratory | 2350 |
|
||
Progress made in ALICE (Accelerators and Lasers In Combined Experiments) commissioning and a summary of the latest experimental results are presented in this paper. After an extensive work on beam loading effects in SC RF linac (booster) and linac cavities conditioning, ALICE can now operate in full energy recovery mode at the bunch charge of 40pC, the beam energy of 30MeV and train lengths of up to 100us. This improved operation of the machine resulted in generation of coherently enhanced broadband THz radiation with the energy of several tens of uJ per pulse and in successful demonstration of the Compton Backscattering x-ray source experiment. The next steps in the ALICE scientific programme are commissioning of the IR FEL and start of the research on the first non-scaling FFAG accelerator EMMA. Results from both projects will be also reported. |
||
THPD024 | Recent Developments On The EMMA On-line Commissioning Software | 4325 |
|
||
The EMMA (Electron Model for Many Applications) FFAG experiment at Daresbury will involve on-line modeling (a ‘‘Virtual EMMA'') based on stepwise ray-tracing methods. Various aspects of the code of concern and of its interfacing to real world - machine and users - are addressed. |
||
THPEC090 | The EMMA Non-scaling FFAG | 4266 |
|
||
The Electron Model for Many Applications (EMMA) will be the World's first non-scaling FFAG and is under construction at the STFC Daresbury Laboratory in the UK. Construction is due for completion in March 2010 and will be followed by commissioning with beam and a detailed experimental programme to study the functioning of this type of accelerator. This paper will give an overview of the motivation for the project and describe the EMMA design and hardware. The first results from commissioning will be presented in a separate paper. |