Paper | Title | Page |
---|---|---|
TUPEC041 | Beam Stacking in the NSLS-II Booster | 1817 |
|
||
The National Synchrotron Light Source II (NSLS-II) is a state of the art 3 GeV third generation light source currently under construction at Brookhaven National Laboratory. The NSLS-II injection system consists of a 200 MeV linac and a 3 GeV booster synchrotron. The injection system needs to deliver 7.5 nC in 80 - 150 bunches to the storage ring every minute to achieve current stability goals in the storage ring. This is a very stringent requirement that has not been demonstrated at an operating light source, though it should be achievable. To alleviate the charge requirement on the linac, we have designed a scheme to stack two bunch trains in the booster. In this paper we discuss this stacking scheme. The performance of the stacking scheme is studied in detail at injection and through a full booster ramp. We show the the ultimate performance of the stacking scheme is similar to a single bunch train in the booster if the linac emittance meets the requirements. Increasing the emittance of the linac beam degrades the performance, but still allows an overall increase of train charge vs. one bunch train. |
||
TUPEC045 | Requirements on the Pulsed Magnets for the Best Injector Performance | 1823 |
|
||
Booster extraction presents a number of problems that include strengths and waveforms of the pulsed magnets and design of the vacuum chamber. Instabilities in the booster extraction may compromise the extracted beam quality deteriorating value of high-performance injector design. Here we discuss requirements and tolerances for the extraction system components and methods of increasing its performance. |
||
TUPD084 | High Current Limitations for the NSLS-II Booster | 2108 |
|
||
In this paper, we present an overview of the impact of collective effects upon the performance of the NSLS-II booster. |
||
WEPEA082 | Status of the NSLS-II Injection System Development | 2672 |
|
||
We discuss status and plans of development of the NSLS-II injector. The injector consists of 200 MeV linac, 3-GeV booster, transport lines and injection straight section. The system design is now nearly completed and the injector development is in the procurement phase. The injector commissioning is planned to take place in 2012. |
||
WEPEA084 | Study of Beam Emittance and Energy Spread Measurements Using SVD and Multiple Flags in the NSLS-II Booster Extraction Beamline | 2677 |
|
||
The low beam emittance requirement in the NSLS-II storage ring imposes a very tight constraint on its acceptance. This requires the injected beam emittance to be very small, for which a reliable scheme of measurement to determine the phase space and momentum characteristics of the beam coming out the booster is necessary. The original scheme based on the booster-to-dump transport line was hampered by the difficulty in decoupling betatron oscillation from dispersion, due to high concentration of dipoles and limited number of quads after the booster. This paper will describe the alternative method being planned to use the booster extraction line to measure the beam emittance and energy spread, as well as the associated errors. |
||
TUPEC042 | NSLS-II Transport Line Performance | 1820 |
|
||
The NSLS-II injection system consists of a 200 MeV linac and a 3 GeV booster synchrotron and associated transport lines. The transport lines need to transport the beam from the linac to the booster and from the booster to the storage ring in a way that provide high injection efficiency. In this paper we discuss progress on specifying and prototyping the NSLS-II transfer lines including diagnostics, magnet specifications, and safety systems. Commissioning plans are also discussed. |