A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Scott, D.J.

Paper Title Page
THPEC033 Eddy Current Studies From the Undulator-based Positron Source Target Wheel Prototype 4125
 
  • I.R. Bailey, J.A. Clarke, D.J. Scott
    Cockcroft Institute, Warrington, Cheshire
  • I.R. Bailey
    Lancaster University, Lancaster
  • C.G. Brown, J. Gronberg, L.B. Hagler, W.T. Piggott
    LLNL, Livermore, California
  • L.J. Jenner
    Imperial College of Science and Technology, Department of Physics, London
  • L. Zang
    The University of Liverpool, Liverpool
 
 

The ef­fi­cien­cy of fu­ture positron sources for the next gen­er­a­tion of high-en­er­gy par­ti­cle col­lid­ers (e.g. ILC, CLIC, LHeC) can be im­proved if the positron-pro­duc­tion tar­get is im­mersed in the mag­net­ic field of ad­ja­cent cap­ture op­tics. If the tar­get is also ro­tat­ing due to heat de­po­si­tion con­sid­er­a­tions then eddy cur­rents may be in­duced and lead to ad­di­tion­al heat­ing and stress­es. In this paper we pre­sent data from a ro­tat­ing tar­get wheel pro­to­type for the base­line ILC positron source. The wheel has been op­er­at­ed at rev­o­lu­tion rates up to 1800rpm in fields of the order of 1 Tesla. Com­par­isons are made be­tween torque data ob­tained from a trans­duc­er on the tar­get drive shaft and the re­sults of fi­nite-el­e­ment sim­u­la­tions. Ro­tor­dy­nam­ics is­sues are pre­sent­ed and fu­ture ex­per­i­ments on other as­pects of the positron source tar­get sta­tion are con­sid­ered.

 
TUPE096 Recent Developments on ALICE (Accelerators and Lasers In Combined Experiments) at Daresbury Laboratory 2350
 
  • Y.M. Saveliev, R. Bate, R.K. Buckley, S.R. Buckley, J.A. Clarke, P.A. Corlett, D.J. Dunning, A.R. Goulden, S.F. Hill, F. Jackson, S.P. Jamison, J.K. Jones, L.B. Jones, S. Leonard, P.A. McIntosh, J.W. McKenzie, K.J. Middleman, B.L. Militsyn, A.J. Moss, B.D. Muratori, J.F. Orrett, S.M. Pattalwar, P.J. Phillips, D.J. Scott, E.A. Seddon, B.J.A. Shepherd, S.L. Smith, N. Thompson, A.E. Wheelhouse, P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • P. Harrison, D.J. Holder, G.M. Holder, A.L. Schofield, P. Weightman, R.L. Williams
    The University of Liverpool, Liverpool
  • D. Laundy
    STFC/DL, Daresbury, Warrington, Cheshire
  • T. Powers
    JLAB, Newport News, Virginia
  • G. Priebe, M. Surman
    STFC/DL/SRD, Daresbury, Warrington, Cheshire
 
 

Progress made in ALICE (Ac­cel­er­a­tors and Lasers In Com­bined Ex­per­i­ments) com­mis­sion­ing and a sum­ma­ry of the lat­est ex­per­i­men­tal re­sults are pre­sent­ed in this paper. After an ex­ten­sive work on beam load­ing ef­fects in SC RF linac (boost­er) and linac cav­i­ties con­di­tion­ing, ALICE can now op­er­ate in full en­er­gy re­cov­ery mode at the bunch charge of 40pC, the beam en­er­gy of 30MeV and train lengths of up to 100us. This im­proved op­er­a­tion of the ma­chine re­sult­ed in gen­er­a­tion of co­her­ent­ly en­hanced broad­band THz ra­di­a­tion with the en­er­gy of sev­er­al tens of uJ per pulse and in suc­cess­ful demon­stra­tion of the Comp­ton Backscat­ter­ing x-ray source ex­per­i­ment. The next steps in the ALICE sci­en­tif­ic pro­gramme are com­mis­sion­ing of the IR FEL and start of the re­search on the first non-scal­ing FFAG ac­cel­er­a­tor EMMA. Re­sults from both pro­jects will be also re­port­ed.

 
WEPD018 Status of COLDDIAG: a Cold Vacuum Chamber for Diagnostics 3126
 
  • S. Gerstl, T. Baumbach, S. Casalbuoni, A.W. Grau, M. Hagelstein, D. Saez de Jauregui
    Karlsruhe Institute of Technology (KIT), Karlsruhe
  • V. Baglin
    CERN, Geneva
  • C. Boffo, G. Sikler
    BNG, Würzburg
  • T.W. Bradshaw
    STFC/RAL, Chilton, Didcot, Oxon
  • R. Cimino, M. Commisso, B. Spataro
    INFN/LNF, Frascati (Roma)
  • J.A. Clarke, D.J. Scott
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • M.P. Cox, J.C. Schouten
    Diamond, Oxfordshire
  • R.M. Jones, I.R.R. Shinton
    UMAN, Manchester
  • A. Mostacci
    Rome University La Sapienza, Roma
  • E.J. Wallén
    MAX-lab, Lund
  • R. Weigel
    Max-Planck Institute for Metal Research, Stuttgart
 
 

One of the still open is­sues for the de­vel­op­ment of su­per­con­duct­ing in­ser­tion de­vices is the un­der­stand­ing of the beam heat load. With the aim of mea­sur­ing the beam heat load to a cold bore and the hope to gain a deep­er un­der­stand­ing in the beam heat load mech­a­nisms, a cold vac­u­um cham­ber for di­ag­nos­tics is under con­struc­tion. The fol­low­ing di­ag­nos­tics will be im­ple­ment­ed: i) re­tard­ing field an­a­lyz­ers to mea­sure the elec­tron flux, ii) tem­per­a­ture sen­sors to mea­sure the total heat load, iii) pres­sure gauges, iv) and mass spec­trom­e­ters to mea­sure the gas con­tent. The inner vac­u­um cham­ber will be re­mov­able in order to test dif­fer­ent ge­ome­tries and ma­te­ri­als. This will allow the in­stal­la­tion of the cryo­stat in dif­fer­ent syn­chrotron light sources. COLD­DI­AG will be built to fit in a short straight sec­tion at ANKA. A first in­stal­la­tion at the syn­chrotron light source DI­A­MOND is under dis­cus­sion. Here we de­scribe the tech­ni­cal de­sign re­port of this de­vice and the planned mea­sure­ments with beam.