A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Sajaev, V.

Paper Title Page
WEPEB049 Recent Progress of the Bunch-by-bunch Feedback System at the Advanced Photon Source 2803
 
  • C. Yao, N.P. Di Monte, V. Sajaev
    ANL, Argonne
 
 

A bunch-by-bunch feedback system was installed at the APS in 2008. Close-loop tests were conducted and improvements have been made to the system that include two 500-watt amplifiers, a new location for the horizontal drive stripline, a two-blade new horizontal stripline, and upgrade of front-end electronics. With these improvements we are able to stabilize beam with a reduced chromaticity of 0.45 in the horizontal plane and 2.5 in the vertical plane for the 24-singlet bunch pattern. Beam lifetime has increased from 8.5 hours to 15 hours. We did not observe any obvious increase in the effective beam emittance and rms beam motion. More studies will be performed to explore the potential of improving beam performance of the hybrids fill pattern, which has a 16-mA leading bunch. We report the system improvements and the results of our test results.


cyao@aps.anl.gov

 
THPE089 Uses of Turn-by-turn Data from FPGA-based BPMs during Operation at the APS Storage Ring 4734
 
  • V. Sajaev
    ANL, Argonne
 
 

APS has started a program of upgrading old BPM electronics to new FPGA-based devices. We present here the use of such BPMs for online measurement of betatron tunes during topup operation. In topup injection, the stored beam is kicked and experiences betatron oscillations that can be used for online monitoring of the betatron tunes. Also, due to kicker waveform time dependence, different bunches experience kicks of different amplitude. By collecting data from different bunches one can also monitor tune shift with amplitude. In the case of APS, the matter is complicated by the very fast decoherence of oscillations. We describe methods used to derive tunes and present results of online monitoring.

 
THPE091 Simultaneous Measurement of all Sextupole Offsets using the Response Matrix Fit 4737
 
  • V. Sajaev, A. Xiao
    ANL, Argonne
 
 

APS linear model is defined by the quadrupole and skew quadrupole errors that are determined using the response matrix fit. What was missing until now were the sextupole offsets relative to the beam orbit. At APS the orbit is routinely steered according to user requests, and at some locations the steering has accumulated to rather large values. That is why the usual sextupole changes that are performed during operation mode switches lead to optics and coupling changes. Knowledge of the sextupole offsets would allow us to predict and control those changes. There are a number of ways to measure sextupole offsets but most of them utilize element by element approach. This would take very long time for the 280 sextupoles at APS. Here we describe a method that determines the beam offsets of all sextupoles based on fitted values of local optics and coupling changes at each sextupole. We perform response matrix measurement, fit several lattices with different sextupoles, and derive the sextupole offsets. The results are included in the linear model of the APS storage ring.