A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Ryne, R.D.

Paper Title Page
TUPD020 Studies of Space Charge Effects in the Proposed CERN PS2 1964
 
  • J. Qiang, R.D. Ryne
    LBNL, Berkeley, California
  • R. De Maria
    BNL, Upton, Long Island, New York
  • A. Macridin, P. Spentzouris
    Fermilab, Batavia
  • Y. Papaphilippou
    CERN, Geneva
  • U. Wienands
    SLAC, Menlo Park, California
 
 

A new proton synchrotron, the PS2, is under design study to replace the the current proton synchrotron at CERN for the LHC upgrade. Nonlinear space charge effects could cause significant beam emittance growth and particle losses and limit the performance of the PS2. In this paper, we report on studies of the potential space-charge effects at the PS2 using three-dimensional self-consistent macroparticle tracking codes, IMPACT, MaryLie/IMPACT, and Synergia. We will present initial benchmark results among these codes. Effects of space-charge on the emittance growth, especially due to synchrotron coupling, and the aperture sizes will also be discussed.

 
WEPEA067 Design Studies for a VUV-Soft X-ray FEL Facility at LBNL 2639
 
  • J.N. Corlett, K.M. Baptiste, J.M. Byrd, P. Denes, R.W. Falcone, J. Feng, J. Kirz, D. Li, H.A. Padmore, C. F. Papadopoulos, G. Penn, J. Qiang, D. Robin, R.D. Ryne, F. Sannibale, R.W. Schoenlein, J.W. Staples, C. Steier, T. Vecchione, M. Venturini, W. Wan, R.P. Wells, R.B. Wilcox, J.S. Wurtele, A. Zholents
    LBNL, Berkeley, California
  • A.E. Charman, E. Kur
    UCB, Berkeley, California
 
 

Recent reports have identified the scientific requirements for a future soft x-ray light source and a high-repetition-rate FEL facility responsive to them is being studied at LBNL. The facility is based on a CW superconducting linear accelerator with beam supplied by a high-brightness, high-repetition-rate photocathode electron gun, and on an array of FELs to which the beam is distributed, each operating at high repetition rate and with even pulse spacing. Dependent on the experimental requirements, the individual FELs may be configured for either SASE, HGHG, EEHG, or oscillator mode of operation, and will produce high peak and average brightness x-rays with a flexible pulse format ranging from sub-femtoseconds to hundreds of femtoseconds. We are developing a design concept for a 10‐beamline, coherent, soft x‐ray FEL array powered by a 2.5 GeV superconducting accelerator operating with a 1 MHz bunch repetition rate. Electron bunches are fanned out through a spreader, distributing beams to an array of 10 independently configurable FEL beamlines with nominal bunch rates up to 100 kHz. Additionally, one beamline could be configured to operate at higher repetition rate.