Paper | Title | Page |
---|---|---|
MOPE089 | CESR Beam Position Monitor System Upgrade for CesrTA and CHESS Operations | 1191 |
|
||
The beam position monitor (BPM) system at the Cornell Electron Storage Ring (CESR) has been upgraded for use in both CESR Test Accelerator (CesrTA) and Cornell High Energy Synchrotron Source (CHESS) operations. CesrTA operates with electron and positron bunch trains with as little as 4ns bunch spacing. CHESS operates with simultaneous counter-rotating electron and positron trains with 14ns bunch spacing. The upgraded BPM system provides high resolution measurement capability as is needed for the CesrTA ultra low emittance operations, turn-by-turn digitization of multiple bunches for beam dynamics studies, and the capability for real-time dual beam monitoring in CHESS conditions. In addition to standard position measurement capability, the system is also required to measure betatron phase by synchronous detection of a driven beam for optics diagnosis and correction. This paper describes the characteristics of the BPM hardware upgrade, performance figures of the electronics designed for this purpose and the overall status of the upgrade effort. Examples of key measurement types and the analysis of data acquired from the new instruments will also be presented. |
||
TUYMH02 | Electron Cloud at Low Emittance in CesrTA | 1251 |
|
||
The Cornell Electron Storage Ring (CESR) has been reconfigured as a test accelerator (CesrTA) for a program of electron cloud (EC) research at ultra low emittance. The instrumentation in the ring has been upgraded with local diagnostics for measurement of cloud density and with improved beam diagnostics for the characterization of both the low emittance performance and the beam dynamics of high intensity bunch trains interacting with the cloud. Finally a range of EC mitigation methods have been deployed and tested. Measurements of cloud density and its impact on the beam under a range of conditions will be presented and compared with simulations. The effectiveness of a range of mitigation techniques will also be discussed. |
||
|
||
TUPD024 | Progress in Studies of Electron-cloud-induced Optics Distortions at CesrTA | 1976 |
|
||
The Cornell Electron Storage Ring Test Accelerator (CesrTA) program has included extensive measurements of coherent tune shifts for a variety of electron and positron beam energies, bunch current levels, and bunch train configurations. The tune shifts have been shown to result primarily from the interaction of the beam with the space-charge field of the beam-induced low-energy electron cloud in the vacuum chamber. Comparison to several advanced electron cloud simulation program packages has allowed determination of the sensitivity of these measurements to physical parameters such as the synchrotron radiation flux, its interaction with the vacuum chamber wall, the beam emittance and lattice optics, as well as to those of the various contributions to the electron secondary yield model. We report on progress in understanding the cloud buildup and decay mechanisms in magnetic fields and in field-free regions, addressing quantitatively the precise determination of the physical parameters of the modelling. Validation of these models will serve as essential input in the design of damping rings for future high-energy linear colliders. |
||
THPE046 | CesrTA Low Emittance Tuning | 4620 |
|
||
We are developing techniques for measuring and correcting emittance diluting optical and alignment errors in the CesrTA storage ring. Our principle measurement method is to resonantly excite the beam at all three normal mode frequencies and then to extract the amplitude and phase of each mode at all 100 beam position monitors. We reconstruct beta-functions, betatron phase advance, coupling parameters, dispersion, and BPM tilts from the data. A complete characterization including data collection and analysis can be done in a few minutes. To measure the emittance, an x-ray beam size monitor capable of measuring the size of a single bunch on a turn by turn basis provides a real time measure with a resolution on the order of a few microns. This resolution corresponds to a few pm emittance. Our ability to identify alignment and optical errors is limited by systematic measurement errors. We report on the status of our efforts to understand and eliminate systematic errors, the accuracy of our characterization of the machine optics, and our success at reducing sources of emittance dilution. |