Paper | Title | Page |
---|---|---|
MOPE070 | Cavity Beam Position Monitor System for ATF2 | 1140 |
|
||
The Accelerator Test Facility 2 (ATF2) in KEK, Japan, is a prototype scaled demonstrator system for the final focus required for a lepton linear collider. The ATF2 beam-line is instrumented with a total of 38 C and S band resonant cavity beam position monitors (BPM) with associated mixer electronics and digitizers. The current status of the BPM system is described, with a focus on operational techniques and performance. |
||
TUYMH02 | Electron Cloud at Low Emittance in CesrTA | 1251 |
|
||
The Cornell Electron Storage Ring (CESR) has been reconfigured as a test accelerator (CesrTA) for a program of electron cloud (EC) research at ultra low emittance. The instrumentation in the ring has been upgraded with local diagnostics for measurement of cloud density and with improved beam diagnostics for the characterization of both the low emittance performance and the beam dynamics of high intensity bunch trains interacting with the cloud. Finally a range of EC mitigation methods have been deployed and tested. Measurements of cloud density and its impact on the beam under a range of conditions will be presented and compared with simulations. The effectiveness of a range of mitigation techniques will also be discussed. |
||
|
||
WEPE008 | Construction of the S1-Global Cryomodules for ILC | 3356 |
|
||
In an attempt at demonstrating an average field gradient of 31.5 MV/m as per the design accelerating gradient for ILC, a program called S1-Global is in progress as an international research collaboration among KEK, INFN, FNAL, DESY and SLAC. The S1-Global cryomodule will contain eight superconducting cavities from FNAL, DESY and KEK. The cryomodule will be constructed by joining two half-size cryomodules, each 6 m in length. The module containing four cavities from FNAL and DESY has been constructed by INFN. The module for four KEK cavities is being modified at present. The assembly of the cryomodules is scheduled from January 2010, and the operation of the system is scheduled from June 2010 at the KEK-STF. In this paper, the construction of the S1-Global cryomodule will be presented. |