Paper | Title | Page |
---|---|---|
MOPD003 | Engineering Status of SIS100 | 672 |
|
||
The engineering design, including the specifications for the accelerator components of the FAIR synchrotron SIS100 has been summarized in the Technical Design Report. The final stage of technical planning shall approach production readiness for the major technical systems in 2010. Significant progress has been achieved in the design of the cryomagnetic system with its main dipole and quadrupole modules, enabling the production of the first pre-series dipole magnet. Slight modifications of the lattice have been implemented to equalize most of the cryostat interconnections, leading to a simplified design and installation effort, and a reduced variety of components and spar parts. The new parallel tunnel allows optimal short interconnections between the supply units and power converters and the accelerator components. The status of the engineering design of SIS100 will be reported. |
||
THPEB004 | Slow Extraction from the Superconducting Synchrotron SIS300 at FAIR: Lattice Optimization and Compensation of Field Errors | 3882 |
|
||
With the ability to accelerate heavy ions up to an energy of 32 GeV/u, the SIS300 superconducting (sc) synchrotron is a central part of the new FAIR facility at GSI-Darmstadt. SIS300 will provide beams with a 20-fold increase in energy and, by means of a stretcher mode or a fast ramped mode (1 T/s), 100-10000 times higher average intensity. The beam from SIS300 will be extracted towards the experiments using resonant slow extraction, thus SIS300 becomes the first superconducting synchrotron worldwide with this feature. Coupling and persistent currents are the main practical limitation for operation of sc magnets at high ramping rates and long slow extraction plateaus. The effect of the persistent currents, which are time dependent and depend as well on the magnet's history, is especially critical for slow extraction at low energies. These effects determine the tolerances on magnetic components. In order to address this issue, detailed simulations of beam dynamics at slow extraction have been performed. In particular, the optimization of the lattice and its optical parameters for a low-loss extraction in the presence of steady and time-dependent field components will be presented. |