A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Puppel, P.

Paper Title Page
MOPD002 Acceleration of Intermediate Charge State Heavy Ions in SIS18 669
 
  • P.J. Spiller, H. Eickhoff, H. Kollmus, P. Puppel, H. Reich-Sprenger
    GSI, Darmstadt
  • L.H.J. Bozyk
    FIAS, Frankfurt am Main
 
 

After partially completing the upgrade program of SIS18, the number of intermediate charge state heavy ions accelerated to the FAIR booster energy of 200 MeV/u, could be increased by a factor of 50. Meanwhile, more than 1010 Uranium ions with charge state 27+ have been accelerated with moderate beam loss by ionization and reasonably stable residual gas pressure conditions. The specific challenge for the SIS18 booster operation is the high cross section for ionization due to the low charge state in combination with gas desorption processes and the dynamic vacuum pressure. Especially for this operation mode which is requied to match the intensity requirements for FAIR, an extended upgrade program of SIS18 is presently ongoing and partially completed. The achieved progress in minimizing the ionization beam loss underlines that the chosen technical strategies described in this report are appropriate.

 
MOPEC058 StrahlSim, a Computer Code for the Simulation of Charge Exchange Beam Loss and Dynamic Vacuum in Heavy Ion Synchrotrons 594
 
  • P. Puppel, U. Ratzinger
    IAP, Frankfurt am Main
  • L.H.J. Bozyk
    TU Darmstadt, Darmstadt
  • P.J. Spiller
    GSI, Darmstadt
 
 

StrahlSim is a unique code for the simulation of charge exchange driven beam loss and dynamic vacuum effects in heavy ion synchrotrons. Dynamic vacuum effects are one of the most challenging problems for accelerators using intermediate charge state, high intensity heavy ion beams (e.g. AGS Booster, LEIR, SIS18). StrahlSim can be used as a design tool for synchrotrons, e.g. for the estimation of pumping power needed to stabilize the dynamic vacuum. Recently, StrahlSim has been extended to simulate time dependent longitudinal pressure profiles. The new code calculates a self-consistent static pressure distribution along the accelerator and simulates local pressure rises caused by dynamic and systematic beam losses. StrahlSim determines the loss distribution of charge exchanged beam ions and respects the beam energy dependence of the charge exchange cross sections. The beam loss calculated by means of the new time dependent longitudinal pressure profiles has been benchmarked with measured data from the latest SIS18 machine experiments.