A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Pozimski, J.K.

Paper Title Page
MOPEC078 Commissioning of the Low Energy Beam Transport of the Front End Test Stand 648
 
  • J.J. Back
    University of Warwick, Coventry
  • J. Alonso
    Fundación Tekniker, Elbr (Guipuzkoa)
  • F.J. Bermejo
    Bilbao, Faculty of Science and Technology, Bilbao
  • R. Enparantza
    Fundación TEKNIKER, Eibar (Gipuzkoa)
  • D.C. Faircloth, A.P. Letchford
    STFC/RAL, Chilton, Didcot, Oxon
  • C. Gabor
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
  • S.R. Lawrie
    STFC/RAL/ISIS, Chilton, Didcot, Oxon
  • J. Lucas
    Elytt Energy, Madrid
  • J.K. Pozimski, P. Savage
    Imperial College of Science and Technology, Department of Physics, London
 
 

The Front End Test Stand (FETS) at the Rutherford Appleton Laboratory is intended to demonstrate the early stages of acceleration (0-3 MeV) and beam chopping required for high power proton accelerators, including proton drivers for pulsed neutron spallation sources and neutrino factories. A Low Energy Beam Transport (LEBT), consisting of three solenoids and four drift sections, is used to transport the H- beam from the ion source to the FETS Radio Frequency Quadrupole. We present the status of the installation and commissioning of the LEBT, and compare particle dynamics simulations with preliminary measurements of the H- beam transport through the LEBT.

 
MOPEC079 A Tuning System for the FETS RFQ 651
 
  • S.M.H. Alsari, J.K. Pozimski, P. Savage, O. Zorba
    Imperial College of Science and Technology, Department of Physics, London
  • A.P. Letchford
    STFC/RAL/ISIS, Chilton, Didcot, Oxon
 
 

The Front End Test Stand (FETS) is an experiment based at the Rutherford Appleton Laboratory (RAL) in the UK. The test stand is being constructed in collaboration between STFC, Imperial College London, ASTeC, the University of Warwick and the Universidad del Pais Vasco. This experiment will design, build and test the first stages necessary to produce a very high quality, chopped H- ion beam as required for the next generation of high power proton accelerators (HPPAs). HPPAs with beam powers in the megawatt range have many possible applications including drivers for spallation neutron sources, neutrino factories, accelerator driven sub-critical systems, waste transmuters and tritium production facilities. An automatic tuning system has been developed for the main 324MHz 4-vane RFQ accelerator and has been tested to fine tune the changes in the resonant frequency of a 324MHz 4-vane cold model RFQ, which been designed as part of the development of the test stand. This paper will present the electronics design of the automated tuning system along with the mechanical tuner structure. The design concepts will be discussed. Furthermore, results of the RF tuning would be presented.

 
MOPD057 Assessing the Transmission of the H- Ion Beam on the Front End Test Stand 813
 
  • S.R. Lawrie, D.C. Faircloth, A.P. Letchford, M. Perkins
    STFC/RAL/ISIS, Chilton, Didcot, Oxon
  • C. Gabor
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
  • J.K. Pozimski
    Imperial College of Science and Technology, Department of Physics, London
 
 

The front end test stand (FETS) [1] is entering the next stage of construction and commissioning, with the three-solenoid magnetic low energy beam transport (LEBT) line being installed. A thorough characterization of the beam leaving the Penning H- ion source has been performed. This includes measurements of the beam current using toroids and of the transverse emittance using slit-slit scanners. These measurements are performed over a wide range of source discharge and extraction parameters in order to understand how the transmission may be improved. Comments on the quality of the beam to be injected into the FETS radio frequency quadrupole (RFQ) are given.

 
MOPD058 Combined Electromagnetic-Thermal-Structural Simulation of the Four-metre Radio Frequency Quadrupole to be Installed on the Front End Test Stand 816
 
  • S.R. Lawrie, A.P. Letchford
    STFC/RAL/ISIS, Chilton, Didcot, Oxon
  • J.K. Pozimski, P. Savage
    Imperial College of Science and Technology, Department of Physics, London
 
 

The front end test stand (FETS) [1] being constructed at the Rutherford Appleton Laboratory is entering the next stage of commissioning, with the three-solenoid magnetic low energy beam transport (LEBT) now installed and undergoing commissioning. The next major component to be manufactured is the 3 MeV, 324 MHz, four metre radio frequency quadrupole (RFQ). The mechanical design is almost complete so a comprehensive finite element model of the entire RFQ has been made in ANSYS to ensure the electromagnetic, thermal and structural properties are sound. An analysis of the cooling strategy and expected resonant frequency shift due to thermal expansion are presented.

 
MOPD060 Design Optimisation and Particle Tracking Simulations for PAMELA Injector RFQ 822
 
  • M.J. Easton, M. Aslaninejad, S. Jolly, J.K. Pozimski
    Imperial College of Science and Technology, Department of Physics, London
  • K.J. Peach
    JAI, Egham, Surrey
 
 

The PAMELA (Particle Accelerator for MEdicaL Applications) project aims to design an ns-FFAG accelerator for cancer therapy using protons and carbon ions. For the injection system for carbon ions, an RFQ is one option for the first stage of acceleration. Our integrated RFQ design process* has been developed further using Comsol Multiphysics for electric field modelling. The design parameters for the RFQ are automatically converted to a CAD model using Autodesk Inventor, and the electric field map for this model is simulated in Comsol. Particles can then be tracked through this field map using Pulsar Physics' General Particle Tracer (GPT). Our software uses Visual Basic for Applications and MATLAB to automate this process and allow for optimisation of the RFQ design parameters based on particle dynamical considerations. Possible designs for the PAMELA RFQ, including super-conducting and normal-conducting solutions, will be presented and discussed, together with results of the field map simulations and particle tracking for these designs.


* M J Easton et al., RFQ Design Optimisation for PAMELA Injector, PAC09, Vancouver, Canada, April 2009, FR5REP066.

 
WEPE060 Investigation of Beam Loading Effects for the Neutrino Factory Muon Accelerator 3479
 
  • J.K. Pozimski, M. Aslaninejad, C. Bontoiu
    Imperial College of Science and Technology, Department of Physics, London
  • J.S. Berg
    BNL, Upton, Long Island, New York
  • S.A. Bogacz
    JLAB, Newport News, Virginia
  • S. Machida
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
 
 

The IDS study showed that a Neutrino Factory seems to be the most promising candidate for the next phase of high precision neutrino oscillation experiments. A part of the increased precision is due to the fact that in a Neutrino Factory the decay of muons produces a neutrino beam with narrow energy distribution and divergence. The effect of beam loading on the energy distribution of the muon beam in the Neutrino Factory has been investigated numerically. The simulations have been performed using the baseline accelerator design including cavities for different number of bunch trains and bunch train timing. A detailed analysis of the beam energy distribution expected is given together with a discussion of the energy spread produced by the gutter acceleration in the FFAG and the implications for the neutrino oscillation experiments will be presented.

 
THPEB034 The Design of the MEBT for the PAMELA Medical FFAG 3960
 
  • M. Aslaninejad, M.J. Easton, J. Pasternak, J.K. Pozimski
    Imperial College of Science and Technology, Department of Physics, London
  • K.J. Peach, T. Yokoi
    JAI, Oxford
 
 

The PAMELA medical FFAG complex under design in the UK, aims to operate with both proton and carbon beams for hadron therapy. Medium energy beam transfer(MEBT) of PAMELA consists of the proton beam line coming out of the injector cyclotron, carbon beam transfer from the independent carbon 6+ injector linac, switching dipole when both beam merge and transfer line toward the PAMELA NS-FFAG. The MEBT layout and design, which needs to incorporate the beam chopper for the intensity modulation are discussed. The careful matching of optical functions between various components in the MEBT and beam dynamics simulations are presented.

 
THPEB035 Solenoid Fringe Field Effects for the Neutrino Factory Linac - MAD-X Investigation 3963
 
  • M. Aslaninejad, C. Bontoiu, J. Pasternak, J.K. Pozimski
    Imperial College of Science and Technology, Department of Physics, London
  • S.A. Bogacz
    JLAB, Newport News, Virginia
 
 

International Design Study for the Neutrino Factory (IDS-NF) assumes the first stage of muon acceleration (up to 900 MeV) to be implemented with a solenoid based Linac. The Linac consists of three styles of cryo-modules,containing focusing solenoids and varying number of SRF cavities for acceleration. Fringe fields of the solenoids and the focusing effects in the SRF cavities have significant impact on the transverse beam dynamics. Using an analytical formula,the effects of fringe fields and cavities are studied in MAD-X. The resulting betatron functions are compared with the results of beam dynamics simulations using OptiM code.

 
THPEC069 Beam Dynamics Studies on the Radio-Frequency Quadrupole for the Bilbao Accelerator 4214
 
  • I. Bustinduy, N. Garmendia, H. Hassanzadegan, D. de Cos
    ESS Bilbao, Bilbao
  • F.J. Bermejo
    Bilbao, Faculty of Science and Technology, Bilbao
  • V. Etxebarria, J. Portilla
    University of the Basque Country, Faculty of Science and Technology, Bilbao
  • J. Feuchtwanger
    ESS-Bilbao, Zamudio
  • S. Jolly, J.K. Pozimski, P. Savage
    Imperial College of Science and Technology, Department of Physics, London
  • A.P. Letchford
    STFC/RAL/ISIS, Chilton, Didcot, Oxon
 
 

The main objective of the Bilbao Front End Test Stand (ETORFETS) is to set up a facility to demonstrate experimentally the design ideas for the future ESS LINAC that are being proposed in discussion forums by the technical scientific community. ETORFETS is focused on the first stage of the linear accelerator, namely, that of the Radio-Frequency Quadrupole (RFQ) and its pre and post beam transport systems. The RFQ bunches, focuses transverse and longitudinally, and accelerates charged particles in the low-energy range (up to ~ 3 MeV), thus becoming one of the main components of the accelerating structure. The first RFQ simulations, performed in Superfish and GPT software packages, will be presented in this work.

 
THPE033 Beam Dynamics Studies for the First Muon Linac of the Neutrino Factory 4590
 
  • C. Bontoiu, M. Aslaninejad, J.K. Pozimski
    Imperial College of Science and Technology, Department of Physics, London
  • S.A. Bogacz
    JLAB, Newport News, Virginia
 
 

Within the Neutrino Factory Project the muon acceleration process involves a complex chain of accelerators including a (single-pass) linac, two recirculating linacs and an FFAG. The linac consists of RF cavities and iron shielded solenoids for transverse focusing and has been previously designed relying on idealized field models. However, to predict accurately the transport and acceleration of a high emittance 30 cm wide beam with 10 % energy spread requires detailed knowledge of fringe field distributions. This article presents results of the front-to-end tracking of the muon beam through numerically simulated realistic field distributions for the shielded solenoids and the RF fields. Real and phase space evolution of the beam has been studied along the linac and the results will be presented and discussed.

 
MOPEA021 PAMELA Overview and Status 112
 
  • K.J. Peach, J.H. Cobb, S.L. Sheehy, H. Witte, T. Yokoi
    JAI, Oxford
  • M. Aslaninejad, M.J. Easton, J. Pasternak
    Imperial College of Science and Technology, Department of Physics, London
  • R.J. Barlow, H.L. Owen, S.C. Tygier
    UMAN, Manchester
  • C.D. Beard, P.A. McIntosh, S.M. Pattalwar, S.L. Smith, S.I. Tzenov
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • N. Bliss, T.J. Jones, J. Strachan
    STFC/DL, Daresbury, Warrington, Cheshire
  • T.R. Edgecock, J.K. Pozimski
    STFC/RAL, Chilton, Didcot, Oxon
  • R.J.L. Fenning, A. Khan
    Brunel University, Middlesex
  • I.S.K. Gardner, D.J. Kelliher, S. Machida
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
  • M.A. Hill
    GIROB, Oxford
  • C. Johnstone
    Fermilab, Batavia
  • B. Jones, B. Vojnovic
    Gray Institute for Radiation Oncology and Biology, Oxford
  • R. Seviour
    Cockcroft Institute, Lancaster University, Lancaster
 
 

The status of PAMELA (Particle Accelerator for MEdicaL Applications) ' an accelerator for proton and light ion therapy using a non-scaling FFAG (ns-FFAG) accelerator ' is reviewed and discussed.

 
MOPEC076 Integrated Design Method and Beam Dynamics Simulations for the FETS Radio Frequency Quadrupole 645
 
  • S. Jolly, M.J. Easton
    Imperial College of Science and Technology, Department of Physics, London
  • A.P. Letchford
    STFC/RAL/ISIS, Chilton, Didcot, Oxon
  • J.K. Pozimski
    STFC/RAL, Chilton, Didcot, Oxon
 
 

A 4m-long, 324MHz four-vane RFQ, consisting of four coupled sections, is currently being designed for the Front End Test Stand (FETS) at RAL in the UK. A novel design method, integrating the CAD and electromagnetic design of the RFQ with beam dynamics simulations, is being used to optimise the design of the RFQ. Basic RFQ parameters are produced with the RFQSIM code. A full CAD model of the RFQ vane tips is produced in Autodesk Inventor, based upon these parameters. This model is then imported into a field mapping code to produce a simulation of the electrostatic field around the vane tips. This field map is then used to model the beam dynamics within the RFQ using General Particle Tracer (GPT). Previous studies have been carried out using field mapping in CST EM Studio. A more advanced technique using Comsol Multiphysics and Matlab, that more tightly integrates the CAD modelling, field mapping and beam dynamics simulations, is described. Results using this new method are presented and compared to the previous optimisation process using field maps from CST.

 
MOPD056 The Mechanical Engineering Design of the FETS RFQ 810
 
  • P. Savage, S.M.H. Alsari, S. Jolly
    Imperial College of Science and Technology, Department of Physics, London
  • S.R. Lawrie, A.P. Letchford, P. Wise
    STFC/RAL/ISIS, Chilton, Didcot, Oxon
  • J.K. Pozimski
    STFC/RAL, Chilton, Didcot, Oxon
 
 

This paper will present the mechanical engineering design for a 324 MHz 4-vane RFQ, which has been developed for the Front End Test Stand (FETS) project based at the Rutherford Appleton Laboratory (RAL) in the UK. The design criteria will be discussed along with particular design features of the RFQ including the tuners, vacuum ports, main body cooling pocket design and the support / alignment structure. Different techniques for creating the RF and vacuum seal between major and minor vanes are also discussed.

 
MOPEC075 Status of the RAL Front End Test Stand 642
 
  • A.P. Letchford, M.A. Clarke-Gayther, D.C. Faircloth, S.R. Lawrie, M. Perkins, P. Wise
    STFC/RAL/ISIS, Chilton, Didcot, Oxon
  • S.M.H. Alsari, S. Jolly, D.A. Lee, P. Savage
    Imperial College of Science and Technology, Department of Physics, London
  • I. Ariz, R. Enparantza, P. Romano, A. Sedano
    Fundación TEKNIKER, Eibar (Gipuzkoa)
  • J.J. Back
    University of Warwick, Coventry
  • F.J. Bermejo
    Bilbao, Faculty of Science and Technology, Bilbao
  • M. Eguiraun
    ESS-Bilbao, Zamudio
  • V. Etxebarria
    University of the Basque Country, Faculty of Science and Technology, Bilbao
  • C. Gabor, D.C. Plostinar
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
  • N. Garmendia, H. Hassanzadegan
    ESS Bilbao, Bilbao
  • A. Kurup
    Fermilab, Batavia
  • J.K. Pozimski
    STFC/RAL, Chilton, Didcot, Oxon
 
 

The Front End Test Stand (FETS) under construction at the Rutherford Appleton Laboratory is the UK's contribution to research into the next generation of High Power Proton Accelerators (HPPAs). HPPAs are an essential part of any future Spallation Neutron Source, Neutrino Factory, Muon Collider, Accelerator Driven Sub-critical System, Waste Transmuter etc. FETS will demonstrate a high quality, high intensity, chopped H-minus beam and is a collaboration between RAL, Imperial College and the Universtity of Warwick in the UK and the Universidad del Pais Vasco in Spain. This paper describes the current status and future plans of FETS.

 
THPEB033 Injection of Proton and Carbon 6+ into the Non-scaling FFAG 3957
 
  • M. Aslaninejad, M.J. Easton
    Imperial College of Science and Technology, Department of Physics, London
  • J. Pasternak, J.K. Pozimski
    STFC/RAL, Chilton, Didcot, Oxon
  • K.J. Peach, T. Yokoi
    JAI, Oxford
 
 

For the PAMELA medical non-scaling FFAG, carbon 6+ as well as proton particles are required. The general injection layout based on a cyclotron for proton and a Linac for carbon is considered. There are two options for pre-accelerating carbon ions for PAMELA, either accelerating carbon with the charge state 4+ from the ion source and stripping after the pre-accelerator or directly accelerating carbon 6+ ions all the way from the ion source. For both options solution has been investigated. Simulations of beam dynamics for both particle species are presented. The resulting schemes based on either the single turn or multiturn injection into the first FFAG ring are discussed.