A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Perunov, N.

Paper Title Page
MOPEC081 The Concept Design of the CW Linac of the Project X 654
 
  • N. Solyak, E. Gianfelice-Wendt, I.G. Gonin, S. Kazakov, V.A. Lebedev, S. Nagaitsev, J.-F. Ostiguy, N. Perunov, G.V. Romanov, V.P. Yakovlev
    Fermilab, Batavia
 
 

The concept design of the 2.5 GeV superconducting CW linac of the Project X is discussed. The linac structure and break points for different cavity families are described. The results of the RF system optimization are presented as well as the lattice design and beam dynamics analysis.

 
WEPEC057 Single Spoke Cavities for Low-energy Part of CW Linac of Project X. 3022
 
  • I.G. Gonin, M.S. Champion, T.N. Khabiboulline, A. Lunin, N. Perunov, N. Solyak, V.P. Yakovlev
    Fermilab, Batavia
 
 

In the low-energy part of the Project X H-linac there families of 325 MHz SC single spoke cavities will be used, having beta = 0.11, 0.22 and 0.4. Two versions of the beta = 0.11 cavity were considered: low-beta single-spoke cavity and half-wave cavity. Results of detailed optimization of both versions are presented. Single spoke cavity was selected for the linac because of higher r/Q. Results of the beam dynamics optimization for initial stage of the linac with beta=0.11 single spoke cavity are presented as well.

 
MOPEC082 Lattice Design for Project -X CW Superconducting Linac 657
 
  • N. Solyak, I.G. Gonin, J.-F. Ostiguy, V.P. Yakovlev
    Fermilab, Batavia
  • N. Perunov
    MIPT, Dolgoprudniy, Moscow Region
 
 

In this paper, we discuss beam dynamics optimization for a proposed continuous wave (CW) Project-X superconducting (SC) linac. This 2.6 GeV linac has an average current (over few microseconds) of 1 mA, with a pulsed current of up to 5-10 mA. The beam power is 2.6 MW. The CW linac consists of a low-energy 325 MHz section (2.5 MeV - 470 MeV) containing three families of SC single-spoke resonators and one family of triple-spoke resonators followed by a high-energy 1.3 GHz SC section (470 MeV - 2.6 GeV) containing squeezed elliptical (β=0.81) and ILC-type (β=1) cavities. Transverse and longitudinal dynamics in the CW linac are modeled assuming a peak current 10 mA. Different options for focusing structures are considered: solenoidal, doublet, and triplet focusing in the low-energy section; FODO and doublet focusing in the high energy section.