A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Peach, K.J.

Paper Title Page
MOPEA021 PAMELA Overview and Status 112
 
  • K.J. Peach, J.H. Cobb, S.L. Sheehy, H. Witte, T. Yokoi
    JAI, Oxford
  • M. Aslaninejad, M.J. Easton, J. Pasternak
    Imperial College of Science and Technology, Department of Physics, London
  • R.J. Barlow, H.L. Owen, S.C. Tygier
    UMAN, Manchester
  • C.D. Beard, P.A. McIntosh, S.M. Pattalwar, S.L. Smith, S.I. Tzenov
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • N. Bliss, T.J. Jones, J. Strachan
    STFC/DL, Daresbury, Warrington, Cheshire
  • T.R. Edgecock, J.K. Pozimski
    STFC/RAL, Chilton, Didcot, Oxon
  • R.J.L. Fenning, A. Khan
    Brunel University, Middlesex
  • I.S.K. Gardner, D.J. Kelliher, S. Machida
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
  • M.A. Hill
    GIROB, Oxford
  • C. Johnstone
    Fermilab, Batavia
  • B. Jones, B. Vojnovic
    Gray Institute for Radiation Oncology and Biology, Oxford
  • R. Seviour
    Cockcroft Institute, Lancaster University, Lancaster
 
 

The status of PAMELA (Particle Accelerator for MEdicaL Applications) ' an accelerator for proton and light ion therapy using a non-scaling FFAG (ns-FFAG) accelerator ' is reviewed and discussed.

 
MOPEA022 PAMELA: Lattice Solution for a Medical C6+ Therapy Facility 115
 
  • S.L. Sheehy, K.J. Peach, H. Witte, T. Yokoi
    JAI, Oxford
  • D.J. Kelliher, S. Machida
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
 
 

PAMELA (Particle Accelerator for MEdicaL Applications) employs novel non-scaling Fixed Field Alternating Gradient (NS-FFAG) technology in the development of a proton and C6+ particle therapy facility. One of the challenges of this design is the acceleration of high energy C6+ in a lattice which enables high flexibility and reliability for treatments, yet remains minimal in size and complexity. Discussed here is the Carbon 6+ lattice solution in terms of both design and performance.

 
MOPEC048 Beam Extraction of PAMELA NS-FFAG 567
 
  • T. Yokoi, K.J. Peach, H. Witte
    JAI, Oxford
 
 

PAMELA (Particle Accelerator for MEdicaL Application) aims to design a particle therapy facility using Non-scaling FFAG (Fixed Field Alternating Gradient) accelerator. In the beam extraction in PAMELA, the biggest challenge is the flexible energy variability, which is desirable for better dose field formation. The feature is a unique feature of PAMELA for a fixed field accelerator. To realize energy variable beam extraction, PAMELA employs vertical extraction using large a aperture kicker magnet. In the paper, the detail of the extraction scheme, hardware specifications are discussed.

 
MOPD060 Design Optimisation and Particle Tracking Simulations for PAMELA Injector RFQ 822
 
  • M.J. Easton, M. Aslaninejad, S. Jolly, J.K. Pozimski
    Imperial College of Science and Technology, Department of Physics, London
  • K.J. Peach
    JAI, Egham, Surrey
 
 

The PAMELA (Particle Accelerator for MEdicaL Applications) project aims to design an ns-FFAG accelerator for cancer therapy using protons and carbon ions. For the injection system for carbon ions, an RFQ is one option for the first stage of acceleration. Our integrated RFQ design process* has been developed further using Comsol Multiphysics for electric field modelling. The design parameters for the RFQ are automatically converted to a CAD model using Autodesk Inventor, and the electric field map for this model is simulated in Comsol. Particles can then be tracked through this field map using Pulsar Physics' General Particle Tracer (GPT). Our software uses Visual Basic for Applications and MATLAB to automate this process and allow for optimisation of the RFQ design parameters based on particle dynamical considerations. Possible designs for the PAMELA RFQ, including super-conducting and normal-conducting solutions, will be presented and discussed, together with results of the field map simulations and particle tracking for these designs.


* M J Easton et al., RFQ Design Optimisation for PAMELA Injector, PAC09, Vancouver, Canada, April 2009, FR5REP066.

 
THPEB033 Injection of Proton and Carbon 6+ into the Non-scaling FFAG 3957
 
  • M. Aslaninejad, M.J. Easton
    Imperial College of Science and Technology, Department of Physics, London
  • J. Pasternak, J.K. Pozimski
    STFC/RAL, Chilton, Didcot, Oxon
  • K.J. Peach, T. Yokoi
    JAI, Oxford
 
 

For the PAMELA medical non-scaling FFAG, carbon 6+ as well as proton particles are required. The general injection layout based on a cyclotron for proton and a Linac for carbon is considered. There are two options for pre-accelerating carbon ions for PAMELA, either accelerating carbon with the charge state 4+ from the ion source and stripping after the pre-accelerator or directly accelerating carbon 6+ ions all the way from the ion source. For both options solution has been investigated. Simulations of beam dynamics for both particle species are presented. The resulting schemes based on either the single turn or multiturn injection into the first FFAG ring are discussed.

 
THPEB034 The Design of the MEBT for the PAMELA Medical FFAG 3960
 
  • M. Aslaninejad, M.J. Easton, J. Pasternak, J.K. Pozimski
    Imperial College of Science and Technology, Department of Physics, London
  • K.J. Peach, T. Yokoi
    JAI, Oxford
 
 

The PAMELA medical FFAG complex under design in the UK, aims to operate with both proton and carbon beams for hadron therapy. Medium energy beam transfer(MEBT) of PAMELA consists of the proton beam line coming out of the injector cyclotron, carbon beam transfer from the independent carbon 6+ injector linac, switching dipole when both beam merge and transfer line toward the PAMELA NS-FFAG. The MEBT layout and design, which needs to incorporate the beam chopper for the intensity modulation are discussed. The careful matching of optical functions between various components in the MEBT and beam dynamics simulations are presented.