Paper | Title | Page |
---|---|---|
TUPEC014 | Upgraded Photocathode RF Gun at PAL | 1740 |
|
||
A Brookhaven National Laboratory (BNL) type S-band photocathode RF gun is used at Pohang Accelerator Laboratory (PAL) to produce femtosecond tera hertz (fs-THz) radiation. In order to upgrade the fs-THz Facility at PAL, we need to develop the performance of the RF gun. The requirements for new RF gun are following: 1 nC beam charge, 60 Hz repetition frequency and 1 mm mrad normalized rms transverse emittance. A dual feed photocathode RF gun is designed satisfy these requirements. Two additional pumping ports are used to remove the field asymmetry. A large radius and short length of the iris increases the mode separation. The coupling scheme is changed to make the fabrication simpler. The RF gun structure had been modeled using 3D field solver to provide the desired RF parameters and to obtain the field profile. In this paper the new RF gun design and the cold test results will be presented. |
||
THPE011 | Coupling Diagnostics and Control at PLS Storage Ring | 4533 |
|
||
The measurement and the control of the coupling is essential to maximize synchrotron performance. Small coupling is required for small vertical size and high brightness. The Pohang Light Source has a 2.5 GeV storage ring and its coupling constant is measured as about 1%. In addition to errors at quadrupole or sextupole, the condition varying of the insertion device affects the coupling. The coupling for various condition is measured by the resonance and the response matrix and compared with the beam size and the lifetime. The correction and the control of the coupling is presented. |
||
THPE073 | Experimental Study of Spurious Mode in the PLS and PLS-II Storage Ring Vacuum Chamber | 4686 |
|
||
A superconducting RF cavity is used in the storage ring of the Pohang Light Source (PLS) upgrade project (PLS-II) at Pohang Accelerator Laboratory (PAL) for increasing the electron beam current and energy from 2.5GeV/200mA to 3.0GeV/400mA. In order to meet the requirement of lower beam emittance and higher photon energies, as well as more straight sections for insertion devices, the vacuum chambers in the storage ring need to be reconstructed. To control the spurious harmonic resonances' effect to beam position monitors (BPMs) in the PLS and PLS-II storage ring vacuum chamber, the TE mode distribution in vacuum chambers has been analyzed by both numerical simulation and experiment. Based on this analysis, the proper method to control the strength of TE mode at the position of BPMs is suggested. |
||
THPEA032 | Commissioning of L-band Intense Electron Accelerator for Irradiation Applications | 3750 |
|
||
An intense L-band electron linac is now being commissioned at ACEP (Advanced Center for Electron-beam Processing in Cheorwon, Korea) for irradiation applications in collaboration with POSTECH (Pohang University of Science and Technology) and KAPRA (Korea Accelerator and Plasma Research Association). It is capable of producing 10-MeV electron beams with average 30-kW. For a high-power capability, we adopted the L-band traveling-wave structure operated with a 2π/3 mode. The RF power is supplied by the pulsed 25-MW and average 60-kW klystron with the matched pulse modulator and the inverter power supplies. The accelerating gradient is 4.2 MV/m with the beam current of 1.45 A which is fully beam-loaded condition. The solenoidal magnetic field is 700 Gauss to focus the electron beam and suppress the BBU instability. In this paper, we present commissioning status with details of the accelerator system. |
||
THPEA033 | Commissioning of C-band Standing-wave Accelerator | 3753 |
|
||
A C-band standing-wave electron accelerator for a compact X-ray source is being commissioned at ACEP (Advanced Center for Electron-beam Processing in Cheorwon, Korea). It is capable of producing 4-MeV electron beam with pulsed 50-mA. The RF power is supplied by the 5-GHz magnetron with pulsed 1.5 MW and average 1.2 kW. The accelerating column is a bi-periodic and on-axis-coupled structure operated with π/2-mode standing-waves. It consists of 3 bunching cells, 6 normal cells and a coupling cell. As a result of cold tests, the resonant frequency of the accelerating column is 4999.17 MHz at the π/2-mode and the coupling coefficient is 0.92. The field flatness was tuned to be less than 2%. In this paper, we present commissioning status with design details of the accelerator system. |