Paper | Title | Page |
---|---|---|
MOPE007 | Measurement of Low-Emittance Beam with Coded Aperture X Ray Optics at CesrTA | 966 |
|
||
An x-ray beam size monitor based on coded aperture imaging* has been developed at CesrTA, for the purpose of making bunch-by-bunch, turn-by-turn measurements of low emittance beams. Using low-emittance beam (~44 pm, or 16 microns at the x-ray source point) we have been able to make detailed comparisons between the measured mask response and that predicted by theory, validating our simulations of the mask response. In turn, we demonstrate the ability to measure both integrated and single-bunch turn-by-turn beam sizes and positions for monitoring the progress of the low-emittance tuning of the machine, and for electron-cloud instability-related beam dynamics studies. * J.W. Flanagan et al., EPAC08, 1029 (2008). |
||
MOPE088 | TE Wave Measurements of the Electron Cloud in the Cesr-TA Ring | 1188 |
|
||
The CESR Damping Ring Test Accelerator collaboration (Cesr-TA) utilizes the CESR e+/e- storage ring at Cornell University for carrying out R&D activities critical for the ILC damping rings. In particular, various locations have been instrumented for the study of the electron cloud effects and their amelioration. In this paper we present the results obtained using the TE wave propagation method to study the electron cloud evolution and its dependence on several beam and machine parameters. Whenever possible, we have also compared our measurements with those obtained by using retarding field analyzers (RFA) with good agreement. Amongst the results obtained, we were able to detect a strong resonance of the electron cloud with the TE wave in regions of the beampipe where a dipole-like magnetic field is also present. Besides the standard transmission method, we are also developing an alternative procedure, the so-called resonant BPM, which can be used for a more localized measurement of the electron cloud density, which has already yielded promising results. |
||
MOPE089 | CESR Beam Position Monitor System Upgrade for CesrTA and CHESS Operations | 1191 |
|
||
The beam position monitor (BPM) system at the Cornell Electron Storage Ring (CESR) has been upgraded for use in both CESR Test Accelerator (CesrTA) and Cornell High Energy Synchrotron Source (CHESS) operations. CesrTA operates with electron and positron bunch trains with as little as 4ns bunch spacing. CHESS operates with simultaneous counter-rotating electron and positron trains with 14ns bunch spacing. The upgraded BPM system provides high resolution measurement capability as is needed for the CesrTA ultra low emittance operations, turn-by-turn digitization of multiple bunches for beam dynamics studies, and the capability for real-time dual beam monitoring in CHESS conditions. In addition to standard position measurement capability, the system is also required to measure betatron phase by synchronous detection of a driven beam for optics diagnosis and correction. This paper describes the characteristics of the BPM hardware upgrade, performance figures of the electronics designed for this purpose and the overall status of the upgrade effort. Examples of key measurement types and the analysis of data acquired from the new instruments will also be presented. |
||
MOPE091 | Techniques for Observation of Beam Dynamics in the Presence of an Electron Cloud | 1197 |
|
||
During the last several years CESR has been studying the effects of electron clouds on stored beams in order to understand their impact on future linear-collider damping ring designs. One of the important issues is the way that the electron cloud alters the dynamics of bunches within the train. Techniques for observing the dynamical effects of beams interacting with the electron clouds have been developed. These methods will be discussed and examples of measurements will be presented. |
||
TUYMH02 | Electron Cloud at Low Emittance in CesrTA | 1251 |
|
||
The Cornell Electron Storage Ring (CESR) has been reconfigured as a test accelerator (CesrTA) for a program of electron cloud (EC) research at ultra low emittance. The instrumentation in the ring has been upgraded with local diagnostics for measurement of cloud density and with improved beam diagnostics for the characterization of both the low emittance performance and the beam dynamics of high intensity bunch trains interacting with the cloud. Finally a range of EC mitigation methods have been deployed and tested. Measurements of cloud density and its impact on the beam under a range of conditions will be presented and compared with simulations. The effectiveness of a range of mitigation techniques will also be discussed. |
||
|
||
TUPD022 | CesrTA Retarding Field Analyzer Modeling Results | 1970 |
|
||
Retarding field analyzers (RFAs) provide an effective measure of the local electron cloud density and energy distribution. Proper interpretation of RFA data can yield information about the behavior of the cloud, as well as the surface properties of the instrumented vacuum chamber. However, due to the complex interaction of the cloud with the RFA, particularly in regions of high magnetic field, understanding these measurements can be nontrivial. This paper will examine different methods for interpreting RFA data via cloud simulation programs. Possible techniques include postprocessing the output of a simulation code to predict the RFA response, and incorporating an RFA model into the program itself. |
||
TUPD023 | CesrTA Retarding Field Analyzer Measurements in Drifts, Dipoles, Quadrupoles and Wigglers | 1973 |
|
||
Over the course of the CesrTA program, the Cornell Electron Storage Ring (CESR) has been instrumented with several retarding field analyzers (RFAs), which measure the local density and energy distribution of the electron cloud. These RFAs have been installed in drifts, dipoles, quadrupoles, and wigglers; and data have been taken in a variety of beam conditions and bunch configurations. This paper will provide an overview of these results, and give a preliminary evaluation of the efficacy of cloud mitigation techniques implemented in the instrumented vacuum chambers. |
||
TUPD024 | Progress in Studies of Electron-cloud-induced Optics Distortions at CesrTA | 1976 |
|
||
The Cornell Electron Storage Ring Test Accelerator (CesrTA) program has included extensive measurements of coherent tune shifts for a variety of electron and positron beam energies, bunch current levels, and bunch train configurations. The tune shifts have been shown to result primarily from the interaction of the beam with the space-charge field of the beam-induced low-energy electron cloud in the vacuum chamber. Comparison to several advanced electron cloud simulation program packages has allowed determination of the sensitivity of these measurements to physical parameters such as the synchrotron radiation flux, its interaction with the vacuum chamber wall, the beam emittance and lattice optics, as well as to those of the various contributions to the electron secondary yield model. We report on progress in understanding the cloud buildup and decay mechanisms in magnetic fields and in field-free regions, addressing quantitatively the precise determination of the physical parameters of the modelling. Validation of these models will serve as essential input in the design of damping rings for future high-energy linear colliders. |
||
MOPE090 | CesrTA x-Ray Beam Size Monitor Operation | 1194 |
|
||
We report on the design and operation of the CesrTA x-ray beam size monitor (xBSM). The xBSM resolution must be sufficient to measure vertical beam sizes of order 10um by imaging 2-4keV synchrotron radiation photons onto a one-dimensional photodiode array. Instrumentation in the evacuated x-ray beam line includes upstream interchangeable optics elements (slits, coded apertures, and Fresnel zone plates), a monochromator and an InGaAs photodiode detector. The readout is a beam-synchronized FADC that is capable of parallel measurement of consecutive bunches with 4ns spacing. The xBSM has been used to measure beam sizes during the August 2009, November 2009, and April 2010 runs. Single turn measurements are fit to characteristic image shapes to extract beam sizes independent of position variations. The turn-averaged beam size provides feedback for low-emittance tuning. |
||
WEPE097 | Recommendation for the Feasibility of More Compact LC Damping Rings | 3578 |
|
||
As part of the International Linear Collider (ILC) collaboration, we have compared the electron cloud effect for different Damping Ring designs respectively with 6.4 km and 3.2 km circumference and investigated the feasibility of a shorter damping ring with respect to the electron cloud build-up and related beam instability. These studies were carried out with beam parameters of the ILC Low Power option. A reduced damping ring circumference has been proposed for the new ILC baseline design and would allow to considerably reduce the number of components, wiggler magnets and costs. We also briefly discuss the plans for future studies including the luminosity upgrade option with shorter bunch spacing, the evaluation of mitigations and the integration of the CesrTA results into the Damping Ring design. |