Paper | Title | Page |
---|---|---|
MOPEA021 | PAMELA Overview and Status | 112 |
|
||
The status of PAMELA (Particle Accelerator for MEdicaL Applications) ' an accelerator for proton and light ion therapy using a non-scaling FFAG (ns-FFAG) accelerator ' is reviewed and discussed. |
||
TUPEC057 | Advances With Merlin - A Beam Tracking Code | 1853 |
|
||
MERLIN is a highly abstracted particle tracking code written in C++ that provides many unique features, and is simple to extend and modify. We have investigated the addition of high order wakefields to this tracking code and their effects on bunches, particularly with regard to collimation systems for both hadron and lepton accelerators. Updates have also been made to increase the code base compatibility with current compilers, and speed enhancements have been made to the code via the addition of multi-threading to allow cluster operation on the grid. In addition, this allows for simulations with large numbers of particles to take place. Instructions for downloading the new code base are given. |
||
TUPD061 | Simulations of the LHC Collimation System | 2066 |
|
||
The collimation system of the LHC will be critical to its success, as the halo of high energy (7 TeV) particles must be removed in such a way that they do not deposit energy in the superconducting magnets which would quench them, or showers in the experiments. We study the properties of the LHC collimation system as predicted by the Merlin and Sixtrack/K2 simulation packages, and compare their predictions for efficiency and halo production, and the pattern of beam losses. The sophisticated system includes many collimators, serving different purposes. Both programs include energy loss and multiple Coulomb scattering as well as losses through nuclear scattering. The MERLIN code also includes the effects of wakefields. We compare the results and draw conclusions on the performance that can be achieved. |
||
THPD030 | Characterisation of the ALICE Accelerator as an Injector for the EMMA NS-FFAG | 4343 |
|
||
EMMA (Electron Model with Many Applications) is the first proof-of-principle non-scaling FFAG accelerator and is presently under construction at Daresbury Laboratory in the UK. To probe different parts of the bunch phase space during the acceleration from 10 to 20 MeV (which requires rapid resonance crossing), electron bunches are needed with sufficiently small emittance. To understand the phase space painting into the 3000 mm-mrad EMMA acceptance, we have modelled ALICE (Accelerators and Lasers in Combined Experiments) - which acts as an injector for EMMA - using GPT and compared the estimated emittances with measurements made with a variety of screen-based methods. Although the emittances are not yet as small as desired, we obtain reasonable agreement between simulation and measurement. |