A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Okuno, H.

Paper Title Page
TUPEA034 Laser Recycler Using An Asymmetrical Con-focal Cavity 1402
 
  • I. Yamane
    KEK, Ibaraki
  • M. Nakamura, H. Okuno
    RIKEN Nishina Center, Wako
 
 

An asymmetrical con-focal cavity is composed of tow concave mirrors with different focal length, placed face to face, and their axes and focal points coincide. When a laser beam is injected in parallel with the mirror axis, from backward of and just outside of the mirror with the smaller focal length, the laser beam is trapped in the cavity and repeats reflection by mirrors. Then, the beam reflected by the mirror with the larger focal length passes every time the focal point and the period by which pulses return to the focal point is constant. Therefore, if the repetition period of the injected laser pulse is equal to the repetition period in the cavity, all laser pulses comes to the focal point at the same time and the beam intensity is stacked up. Calculation on the performance of an asymmetrical con-focal cavity shows that a laser pulse can be recycled more than a few tens turns and the beam intensity can be stacked to more than a few tens times of the original beam intensity when the laser beam is a Gaussian beam and the reflectance of the mirrors is 100%. Results of calculation is examined using a He-Ne laser and a pair of high reflection mirrors.

 
MOPD046 Construction of New Injector Linac for RI Beam Factory at RIKEN Nishina Center 789
 
  • K. Yamada, S. Arai, M.K. Fujimaki, T. Fujinawa, N. Fukunishi, A. Goto, Y. Higurashi, E. Ikezawa, O. Kamigaito, M. Kase, M. Komiyama, K. Kumagai, T. Maie, T. Nakagawa, J. Ohnishi, H. Okuno, N. Sakamoto, Y. Sato, K. Suda, H. Watanabe, Y. Watanabe, Y. Yano, S. Yokouchi
    RIKEN Nishina Center, Wako
  • H. Fujisawa
    Kyoto ICR, Uji, Kyoto
 
 

A new additional injector (RILAC2) is constructed at RIKEN Nishina Center in order to enable the independent operation of the RIBF experiments and super-heavy element synthesis. The RILAC2 consists of a 28 GHz superconducting ECR ion source, a low-energy beam transport with a pre-buncher, a four-rod RFQ linac, a rebuncher, three DTL tanks, and strong Q-magnets between the rf resonators for the transverse focusing. Very heavy ions with m/q of 7 such as 136Xe20+ and 238U35+ will be accelerated up to the energy of 680 keV/u in the cw mode and be injected to the RIKEN Ring Cyclotron without charge stripping. The RFQ linac, the last tank of the DTL, and the bunchers have been converted from old ones in order to save the cost. Construction of the RILAC2 started at the end of the fiscal 2008. The RFQ and DTLs will be installed in the AVF cyclotron vault and be tested in March 2010. The ECR ion source and low-energy beam transport will be set on the RILAC2 in 2010 summer, and the first beam will be accelerated in 2010 autumn. We will present the details of the linac part of RILAC2 as well as the progress of construction which includes the result of high power test of resonators.

 
THPEB023 Design of the Low Energy Beam Transport in RIKEN New Injector 3936
 
  • Y. Sato, M.K. Fujimaki, N. Fukunishi, A. Goto, Y. Higurashi, E. Ikezawa, O. Kamigaito, M. Kase, T. Nakagawa, J. Ohnishi, H. Okuno, H. Watanabe, Y. Watanabe, S. Yokouchi
    RIKEN Nishina Center, Wako
 
 

The RI beam factory at RIKEN Nishina Center needs high intensity of uranium ion beams. We constructed a new injector, RILAC2, which would provide several hundred times higher intensity. As a part of the RILAC2, we designed the low energy beam transport, LEBT, from the superconducting ECR ion source to the RFQ entrance. In this paper we present its requirements and problems, and show our design as the solutions to them. Especially we focus a technique of a pair of two solenoids to treat a rotational operation and a focusing operation independently. Based on this design, the LEBT was completed in March 2010. The RILAC2 will be operational this fall.

 
THPEB024 Design of the Medium Energy Beam Transport from High-voltage Terminal 3939
 
  • Y. Sato, M.K. Fujimaki, N. Fukunishi, A. Goto, Y. Higurashi, E. Ikezawa, O. Kamigaito, M. Kase, T. Nakagawa, J. Ohnishi, H. Okuno, H. Watanabe, Y. Watanabe, S. Yokouchi
    RIKEN Nishina Center, Wako
 
 

The RI beam factory at RIKEN Nishina Center needs high intensity of uranium ion beams. We have used so far the RFQ pre-injector upstream of the linac system, in which the extraction voltage of the ECR ion source is as low as 5.7 kV for the uranium beam. However, for much higher intensity beams from a newly developed superconducting ECR ion source, such a low voltage was expected to significantly increase their emittance due to the space charge effect. To reduce this effect, we prepared a new pre-injector line of 127 kV for uranium beams by placing the ion source on a high-voltage terminal. In this paper we present the design of the 127 kV medium energy beam transport, MEBT, and show the measured results through the line.