A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Nolen, J.A.

Paper Title Page
TUYMH03 Developing Peta-Scalable Algorithms for Beam Dynamic Simulations 1256
 
  • J. Xu, P.F. Fisher, M. Min, B. Mustapha, J.A. Nolen, P.N. Ostroumov
    ANL, Argonne
 
 

Peta-scalable software packages for beam dynamic simulations are being developed and used at the Argonne Leadership Computing Facility. The standard Particle-In-Cell (PIC) method and direct Vlasov solvers in 4 dimensions have been developed and benchmarked with respect to each other. Both of them have been successfully run on 32 thousands processors on BG/P at Argonne National Laboratory. Challenges and prospects of developing Vlasov solvers in higher dimensions will be discussed. Several scalable Poisson solvers have been developed and incorporated with these software packages. Domain decomposition method has been used for the parallelization. In the future developments, these algorithms will be applied to hundreds of thousands processors for peta-scale computing. These software packages have been applied for the design of accelerators, and some large scale simulations will be shown and discussed.

 

slides icon

Slides

 
THPD079 Optical Studies for the Super Separator Spectrometer S3 4464
 
  • D. Boutin, M. Authier, F. Dechery, O. Delferrière, A. Drouart, J. Payet, D. Uriot
    CEA, Gif-sur-Yvette
  • M. Amthor, H. Savajols, M.-H. Stodel
    GANIL, Caen
  • S.L. Manikonda, J.A. Nolen
    ANL, Argonne
 
 

S3 (Super Separator Spectrometer) [1] is a future device designed for experiments with the high intensity heavy ion stable beams of SPIRAL2 [2] at GANIL (Caen, France). It will include a target resistant to these very high intensities, a first stage momentum achromat for primary beam extraction and suppression, a second stage mass spectrometer and a dedicated detection system. This spectrometer includes large aperture quadrupole triplets with embedded multipolar corrections. To enable the primary beam extraction one triplet has to be opened on one side, which requires an appropriate design of such a multipolar magnet. The final mass separation power required for S3 needs a careful design of the optics with a high level of aberration correction. Multiple symmetric lattices were studied for this purpose. A 4-fold symmetric lattice and the achieved results are described in this paper.


[1] A. Drouart et al., Nucl. Phys. A 834 (2010) 747c. [2] SPIRAL2, http://pro.ganil-spiral2.eu/spiral2