Paper | Title | Page |
---|---|---|
MOPEA045 | Positron Production for a Compact Tunable Intense Gamma Ray Source | 175 |
|
||
A compact tunable gamma ray source has many potential uses in medical and industrial applications. One novel scheme to produce an intense beam of gammas relies on the ability to create a high flux of positrons. We present various positron production methods that are compatible with this approach for producing the intense beam of gammas. |
||
WEPE050 | Alternative Muon Front-end for the International Design Study (IDS) | 3455 |
|
||
We discuss alternative designs of the muon capture front end of the Neutrino Factory International Design Study (IDS). In the front end, a proton bunch on a target creates secondary pions that drift into a capture channel, decaying into muons. A sequence of RF cavities forms the resulting muon beams into strings of bunches of differing energies, aligns the bunches to (nearly) equal central energies, and initiates ionization cooling. This design is affected by limitations on accelerating gradients within magnetic fields. The effects of gradient limitations are explored, and mitigation strategies are presented. |
||
WEPE068 | Muon Capture in the Front End of the IDS Neutrino Factory | 3500 |
|
||
We discuss the design of the muon capture front end of a neutrino factory and present studies of variations of its components. In the front end, a proton bunch on a target creates secondary pions that drift into a capture transport channel, decaying into muons. A sequence of rf cavities forms the resulting muon beams into strings of bunches of differing energies, aligns the bunches to (nearly) equal central energies, and initiates ionization cooling. The cooling section uses absorber material (reducing the 3-D muon momenta) alternating with rf cavities (restoring longitudinal momentum) within strong focusing magnetic fields. The design is affected by limitations on accelerating gradients within magnetic fields. The effects of gradient limitations are explored, and mitigation strategies are presented. Variations of the ionization cooling and acceleration scenarios and extensions toward use in a muon collider are discussed. |
||
WEPE073 | Quasi-isochronous Muon Collection Channels | 3512 |
|
||
Intense muon beams have many potential applications, including neutrino factories and muon colliders. However, muons are produced as tertiary beams, resulting in diffuse phase space distributions. To make useful beams, the muons must be rapidly cooled before they decay. An idea conceived recently for the collection and cooling of muon beams, namely, the use of a Quasi-Isochronous Helical Channel (QIHC) to facilitate capture of muons into RF buckets, has been developed further. The resulting distribution could be cooled quickly and coalesced into a single bunch to optimize the luminosity of a muon collider. After a brief elaboration of the QIHC concept, some recent developments are described. |