Paper | Title | Page |
---|---|---|
THPEB051 | Observation of an Anomalous Tuning Range of a Doped BST Ferroelectric Material Developed for Accelerator Applications | 3987 |
|
||
The BST based ferroelectric-oxide compounds have been found as suitable materials for a fast electrically-controlled RF switches and phase shifters that are under development for accelerator applications in X, Ka and L - frequency bands. The BST(M) material (BST ferroelectric with Mg-based additives) allows fast switching and tuning in vacuum and in air both; switching time of material samples < 10 ns has been demonstrated*. One of the problems related to accelerator application of BST ferroelectric is its high dielectric constant. Decreasing the permittivity however is usually strongly correlated with a decrease in the tunability (k(E)=ε(0)/ε(E)) of ferroelectrics. The use of linear dielectric inclusions in BST ceramics could result in significant suppression of the mentioned k(E) dependence, with the best case being that the tunability vs. ε decrease could be unchanged. On the basis of our measurements we report here two unusual phenomena observed**: (i) the increase both the dc and the dynamic tunability with a decrease of the dielectric constant; (ii) the dynamic tunability was observed to exceed the static tunability at specific magnitudes of the applied field. * A.Kanareykin et al, Proceedings PAC'09. |
||
THPD068 | Experiment on a Tunable Dielectric-Loaded Accelerating Structure | 4437 |
|
||
Dielectric-Loaded Accelerating (DLA) structures are generally lack of approaches to tune frequency after the fabrication. A tunable DLA structure has been developed by using an extra nonlinear ferroelectric layer. Dielectric constant of the applied ferroelectric material is sensitive to temperature and DC voltage. Bench test shows the +14MHz/°C, and 6MHz frequency tuning range for a 25kV/cm of DC bias field. A beam test is planned at Argonne Wakefield Accelerator facility before the IPAC conference. Detailed results will be reported. |